Open Access
Issue
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
Article Number 02006
Number of page(s) 12
Section Integration of Control and Building Automation Systems
DOI https://doi.org/10.1051/e3sconf/202452302006
Published online 07 May 2024
  1. M. Park, S. Tae, S. Suk, G. Ford, M.E. Smith, R. Steffen, A Study on the Sustainable Building Technologies Considering to Performance of Greenhouse Gas Emission Reduction. Procedia Engineering, 118, pp. 1305–1308 (2015). DOI: 10.1016/j.proeng.2015.08.492 [CrossRef] [Google Scholar]
  2. A. Kylili, P.-Z. Georgali, P. Christou, P. Fokaides, An integrated building information modeling (BIM)-based lifecycle-oriented framework for sustainable building design. Construction Innovation, 24(3) (2022). DOI: 10.1108/CI-02-2021-0011 [Google Scholar]
  3. X. Liu, Building Integrated Design Practice under the Concept of Sustainable Development. IOP Conference Series: Earth and Environmental Science, 128 (1), art. no. 012048, (2018). DOI: 10.1088/1755-1315/128/1/012048 [CrossRef] [Google Scholar]
  4. J. Iwaro, A. Mwasha, R.G. Williams, W. Wilson, An integrated approach for sustainable design and assessment of residential building envelope: Part I. International Journal of Low-Carbon Technologies, 10 (3), pp. 268–274 (2013). DOI: 10.1093/ijlct/ctu002 [Google Scholar]
  5. IEA, Buildings overview, 2022 https://www.iea.org/energy-system/buildings#overview accessed on 10 February 2024. [Google Scholar]
  6. World Green Building Council, Bringing embodied carbon upfront, September 2019. [Google Scholar]
  7. T. de Rubeis, S. Falasca, G. Curci, D. Paoletti, D. Ambrosini, Sensitivity of heating performance of an energy self-sufficient building to climate zone, climate change and HVAC system solutions. Sustainable Cities and Society, 61, 102300 (2020). https://doi.org./10.1016/j.scs.2020.102300 [CrossRef] [Google Scholar]
  8. A.Y. Şakar, The financial incentives in financing of energy efficiency in buildings: A comparison between Turkey and European Union. Current Perspectives in Public Finance, pp. 181–206 (2019). [Google Scholar]
  9. L. Di Paolo, A. Di Martino, D. Di Battista, R. Carapellucci, R. Cipollone, The potential of energy planning at Municipality scale: Sustainable Energy and Climate Action Plans (SECAP) and local Energy Communities to meet the energy demand variability. Journal of Physics: Conference Series, 2648 (1), art. no. 012012 (2023). [CrossRef] [Google Scholar]
  10. C. Schenone, I. Delponte, I. Pittaluga, The preparation of the Sustainable Energy Action Plan as a city-level tool for sustainability: The case of Genoa. J. Renew. Sustain. Energy 7, 033126 (2015). [CrossRef] [Google Scholar]
  11. D. Di Battista, C. Barchiesi, L. Di Paolo, S. Abbate, S. Sorvillo, A. Cinocca, R. Carapellucci, D. Ciamponi, D. Cardone, S. Corroppolo, R. Cipollone, The Reporting of Sustainable Energy Action Plans of Municipalities: Methodology and Results of Case Studies from the Abruzzo Region. Energies 14, no. 18: 5932 (2021). https://doi.org/10.3390/en14185932 [CrossRef] [Google Scholar]
  12. M. Fathi, Sustainability and Energy Efficiency in Buildings: A Review. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 16 (2), art. no. 03123002 (2023). DOI: 10.1061/JLADAH.LADR-1110 [Google Scholar]
  13. P. Belany, P. Hrabovsky, Z. Kolkova, Combination of lighting retrofit and life cycle cost analysis for energy efficiency improvement in buildings. Energy Reports, 7, pp. 2470–2483, (2021). DOI: 10.1016/j.egyr.2021.04.044 [CrossRef] [Google Scholar]
  14. A.S. Monteiro, F.P. Monteiro, M.E.L. Tostes, C.M. Carvalho, Methodology for Energy Efficiency on Lighting and Air Conditioning Systems in Buildings Using a Multi-Objective Optimization Algorithm. Energies 13, no. 13: 3303 (2020). https://doi.org/10.3390/en13133303 [CrossRef] [Google Scholar]
  15. T. de Rubeis, L. Giacchetti, D. Paoletti, D. Ambrosini, Building energy performance analysis at urban scale: A supporting tool for energy strategies and urban building energy rating identification. Sustainable Cities and Society, 74, 103220 (2021). DOI 10.1016/j.scs.2021.103220 [CrossRef] [Google Scholar]
  16. J. Song, S.-D. Oh, S.J. Song, Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea. Energy, 189, art. no. 116132 (2019). DOI: 10.1016/j.energy.2019.116132 [CrossRef] [Google Scholar]
  17. C. Camarasa, C. Nägeli, C. Salzer, S. Saraf, Y. Ostermeyer, Specific barriers to massive scale energetic refurbishment for sample markets in Europe. In Proceeding of the 8th Conference of International Forum on Urbanism (2015). https://doi.org/10.3390/ifou-E010 [Google Scholar]
  18. ISTAT—Istituto Nazionale di Statistica, Italian Statistical Institute. Census 2011. Available online: https://www4.istat.it/en/population-and-housing-census/population-and-housing-2011 [Google Scholar]
  19. R. Jedinák, Energy efficiency of building envelopes. Advanced Materials Research, 855, pp. 39–42 (2014). DOI: 10.4028/www.scientific.net/AMR.855.39 [Google Scholar]
  20. N. Verma, A. Jain, Optimized Automatic Lighting Control in a Hotel Building for Energy Efficiency, in Proceedings of the International Conference on Power Energy, Environment and Intelligent Control, PEEIC 2018, art. no. 8665417, pp. 168–172, DOI: 10.1109/PEEIC.2018.8665417 [Google Scholar]
  21. E.K. Simpeh, J—P.G. Pillay, R. Ndihokubwayo, D.J. Nalumu, Improving energy efficiency of HVAC systems in buildings: a review of best practices. International Journal of Building Pathology and Adaptation, 40 (2), pp. 165–182 (2022). DOI: 10.1108/IJBPA-02-2021-0019 [CrossRef] [Google Scholar]
  22. N. Aste, P. Caputo, C. Del Pero, G. Ferla, H.E. Huerto-Cardenas, F. Leonforte, A. Miglioli, A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy, 206, art. no. 118091, (2020). DOI: 10.1016/j.energy.2020.118091 [CrossRef] [Google Scholar]
  23. D. Alfonso-Solar, C. Vargas-Salgado, C. Sánchez-Díaz, E. Hurtado-Pérez, Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability 12, no. 21: 9300 (2020). https://doi.org/10.3390/su12219300 [Google Scholar]
  24. V. Pantovic, S. Petrovic Becirovic, Rising public awareness of energy efficiency of buildings enhanced by “smart” controls of the indoor environment. Thermal Science, 20 (5), art. no. 145 (2016). DOI: 10.2298/TSCI140813145P [Google Scholar]
  25. M. Behl, F. Smarra, R. Mangharam, DR-Advisor: A data-driven demand response recommender system. Applied Energy, 170, pp. 30–46 (2016). DOI: 10.1016/j.apenergy.2016.02.090 [CrossRef] [Google Scholar]
  26. A. Jain, F. Smarra, M. Behl, R. Mangharam, Data-driven model predictive control with regression trees—an application to building energy management. ACM Transactions on Cyber-Physical Systems, 2(1), pp. 1–21 (2018). DOI: 10.1145/3127023 [CrossRef] [Google Scholar]
  27. F. Smarra, A. Jain, T. de Rubeis, D. Ambrosini, A. D’Innocenzo, R. Mangharam, Data-driven model predictive control using random forests for building energy optimization and climate control. Applied Energy, 226, pp. 1252–1272 (2018). DOI: 10.1016/j.apenergy.2018.02.126 [CrossRef] [Google Scholar]
  28. P. Stoffel, M. Berktold, D. Müller, Real-life data-driven model predictive control for building energy systems comparing different machine learning models. Energy and Buildings, 305, art. no. 113895 (2024). DOI: 10.1016/j.enbuild.2024.113895. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.