Open Access
Issue |
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 13 | |
Section | Interaction Between People and Buildings | |
DOI | https://doi.org/10.1051/e3sconf/202452306002 | |
Published online | 07 May 2024 |
- E. Carrazana, T. Ruiz-Gil, S. Fujiyoshi, D. Tanaka, J. Noda, F. Maruyama, M.-A. Jorquera, Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards,” Science of The Total Environment, 901, 165879 (2023) [CrossRef] [Google Scholar]
- S. J. Reynolds, D. W. Black, S. S. Borin, G. Breuer, L. F. Burmeister, L. J. Fuortes, T. F. Smith, M. A. Stein, P. Subramanian, P. S. Thorne, P. Whitten, Indoor environmental quality in six commercial office buildings in the midwest United States,” Appl Occup Environ Hyg., 16, 1065 (2001) [CrossRef] [PubMed] [Google Scholar]
- F. Valeriani, C. Cianfanelli, G. Gianfranceschi, S. Santucci, V. Romano Spica, N. Mucci, Monitoring biodiversity in libraries: A pilot study and perspectives for indoor air quality, J Prev Med Hyg, 58, E238 (2017) [PubMed] [Google Scholar]
- F. Weikl, C. Tischer, A. J. Probst, J. Heinrich, I. Markevych, S. Jochner, K. Pritsch, Fungal and bacterial communities in indoor dust follow different environmental determinants, PLoS One, 11 (2016) [Google Scholar]
- R. I. Adams, S. Bhangar, K. C. Dannemiller, J. A. Eisen, N. Fierer, J. A. Gilbert, J. L. Green, L. C. Marr, S. L. Miller, J. A. Siegel, B. Stephens, M. S. Waring, K. Bibby, Ten questions concerning the microbiomes of buildings, Build Environ, 109, 224 (2016) [CrossRef] [Google Scholar]
- L. Bonadonna, R. Briancesco, A. M. Coccia, P. Meloni, G. Rosa, and U. Moscato, “Microbial air quality in healthcare facilities,” Int J Environ Res Public Health, 18, 6226 (2018) [Google Scholar]
- I. Chirca, The hospital environment and its microbial burden: Challenges and solutions, Future Microbiol, 14, 1007 (2019) [CrossRef] [PubMed] [Google Scholar]
- C. D. Argyropoulos, V. Skoulou, G. Efthimiou, A. K. Michopoulos, Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review, Air Qual Atmos Health, 16, 477 (2023) [CrossRef] [Google Scholar]
- N. A. Megahed and E. M. Ghoneim, Indoor air quality: Rethinking rules of building design strategies in post-pandemic architecture, Environ Res, 193, 110471 (2021) [CrossRef] [PubMed] [Google Scholar]
- ECEC, Indoor air pollution: New EU research reveals higher risks than previously thought (2003). [Google Scholar]
- A. M. Moldoveanu, Biological contamination of air in indoor spaces, in Current Air Quality Issues. InTech, (2015). doi: 10.5772/59727. [Google Scholar]
- T. Husman, Health effects of indoor-air microorganisms, Scand J Work Environ Health, 22, 5 (1996) [CrossRef] [Google Scholar]
- P. Kumar, A. B. Singh, R. Singh, Comprehensive health risk assessment of microbial indoor air quality in microenvironments, PLoS One, 17, e0264226 (2022) [CrossRef] [PubMed] [Google Scholar]
- E. Piecková, Indoor microbial aerosol and its health effects: Microbial exposure in public buildings – Viruses, bacteria, and fungi, Exposure to Microbiological Agents in Indoor and Occupational Environments, 237, (2017) [Google Scholar]
- M. Richard, R. A. M. Fouchier, Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential, FEMS Microbiol Rev, 40, 68 (2016) [CrossRef] [PubMed] [Google Scholar]
- L. Song, J. Zhou, C. Wang, G. Meng, Y. Li, M. Jarin, Z. Wu, X. Xie, Airborne pathogenic microorganisms and air cleaning technology development: A review. J Hazard Mater. 15, 127429 (2022) [CrossRef] [PubMed] [Google Scholar]
- N. Hobeika, C. García-Sánchez, and P. M. Bluyssen, Assessing indoor air quality and ventilation to limit aerosol dispersion—Literature review, Buildings, 13, 742 (2023) [CrossRef] [Google Scholar]
- P. Bhadoria, G. Gupta, A. Agarwal, Viral pandemics in the past two decades: An overview,” J Family Med Prim Care, 10, 2745 (2021) [CrossRef] [PubMed] [Google Scholar]
- A. N. Nair, P. Anand, A. George, and N. Mondal, A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality, Environ Res, 213, 113579 (2022) [CrossRef] [PubMed] [Google Scholar]
- A. J. Prussin, D. O. Schwake, L. C. Marr, Ten questions concerning the aerosolization and transmission of Legionella in the built environment, Build Environ, 123, 684 (2017) [CrossRef] [PubMed] [Google Scholar]
- M. C. Rota, M. G. Caporali, S. Giannitelli, R. Urciuoli, M. Scaturro, M. L. Ricci, La sorveglianza nazionale della legionellosi: risultati relativi all’anno 2022, Boll Epidemiol Naz, 4, 25 (2023) [Google Scholar]
- P. Kumar, Mohd. A. Kausar, A. B. Singh, R. Singh, Biological contaminants in the indoor air environment and their impacts on human health,” Air Qual Atmos Health, 14, 1723 (2021) [CrossRef] [Google Scholar]
- J. C. Luongo, K. P. Fennelly, J. A. Keen, Z. J. Zhai, B. W. Jones, S. L. Miller, Role of mechanical ventilation in the airborne transmission of infectious agents in buildings, Indoor Air, 26, 666 (2016) [CrossRef] [PubMed] [Google Scholar]
- ECDC, Heating, ventilation and air-conditioning systems in the context of COVID-19: First update, (2020). https://www.ecdc.europa.eu/en/publications-data/heating-ventilation-air-conditioning-systems-covid-19 [Google Scholar]
- REHVA, “REHVA COVID-19 Guidance,” (2021). https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf [Google Scholar]
- D. Menzies, J. Popa, J. Hanley, T. Rand, D. Milton, Effect of ultraviolet germicidal lights installed in office ventilation systems on workers’ health and wellbeing: Double-blind multiple crossover trial, Lancet, 362, 1785 (2003) [Google Scholar]
- W. Szeto, W. C. Yam, H. Huang, D. Y. C. Leung, The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens, BMC Infect Dis, 20, 127 (2020) [CrossRef] [PubMed] [Google Scholar]
- J. A. Siegel, I. S. Walker, Deposition of biological aerosols on HVAC heat exchangers,” 2001. https://eta-publications.lbl.gov/sites/default/files/lbnl-47669.pdf [Google Scholar]
- G. Baldelli, M. P. Aliano, G. Amagliani, M. Magnani, G. Brandi, C. Pennino, G. F. Schiavano, Airborne microorganism inactivation by a UV-C LED and ionizer-based continuous sanitation air (CSA) system in train environments, Int J Environ Res Public Health, 19, 1559 (2022) [CrossRef] [PubMed] [Google Scholar]
- A. Forthomme, A. Joubert, Y. Andrès, X. Simon, P. Duquenne, D. Bemer, L. Le Coq, “Microbial aerosol filtration: Growth and release of a bacteria–fungi consortium collected by fibrous filters in different operating conditions, J Aerosol Sci, 72, 32 (2014) [CrossRef] [Google Scholar]
- S. Beck, R. Rodriguez, M. Hawkins, T. Hargy, T. Larason, K. Linden, Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum, Appl Environ Microbiol, 82, AEM.02773 (2015) [Google Scholar]
- N. G. Reed, The history of ultraviolet germicidal irradiation for air disinfection, Public Health Reports, 125, 15 (2010) [CrossRef] [Google Scholar]
- W. Kowalski and W. Bahnfleth, UVGI Design basics for air and surface disinfection, HPAC Heating, Piping, Air Conditioning, 72, 10 (2000). [Google Scholar]
- W. Kowalski, Ultraviolet germicidal irradiation handbook, vol. 1. (Berlin Heidelberg: Springer-Verlag, 2009) [CrossRef] [Google Scholar]
- A. Malayeri, M. Mohseni, B. Cairns, Fluence (UV Dose) required to achieve incremental Log inactivation of bacteria, protozoa, viruses and algae, IUVA News, 18, 4 (2016) https://led-wi.com/pdf/UV_Sensitivity_Review.pdf [Google Scholar]
- H. Zhang, X. Jin, S. Nunayon, A. Lai, Disinfection by in‐duct ultraviolet lamps under different environmental conditions in turbulent airflows, Indoor Air, 30, 500 (2020). https://doi.org/10.1111/ina.12642 [Google Scholar]
- K. Ryan, K. McCabe, N. Clements, M. Hernandez, and S. L. Miller, Inactivation of airborne microorganisms using novel ultraviolet radiation sources in reflective flow-through control devices, Aerosol Science and Technology, 44, 541 (2010) [CrossRef] [Google Scholar]
- G. Pareschi, Research and Development activities against the COVID19 pandemic in INAF and surrounding, Mem. S.A.It. 93, 13, (2022) [Google Scholar]
- M. Lombini, A. Bianco, F. Cortecchia, A. De Rosa, E. Diolaiti, M. Fiorini, L. Lessio, A. Macchi, G. Malaguti, G. Pareschi, D. Rovetta, L. Treccani, G. Zanetti, UVC light for pathogens inactivation in air ducts, Mem. S.A.It., 75, 282 (2022) [Google Scholar]
- M. Lombini, E. Diolaiti, A. De Rosa, L. Lessio, G. Pareschi, A. Bianco, F. Cortecchia, M. Fiorini, G. Fiorini, G. Malaguti, A. Zanutta, Design of optical cavity for air sanification through ultraviolet germicidal irradiation,” Opt. Express, 29, 18688 (2021) [CrossRef] [Google Scholar]
- M. I. Guzman, An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission, Int J Health Plann Manage, 36, 257 (2021) [CrossRef] [PubMed] [Google Scholar]
- M. Gormley, T. J. Aspray, D. A. Kelly, “Aerosol and bioaerosol particle size and dynamics from defective sanitary plumbing systems,” Indoor Air, 31, 1427 (2021) [CrossRef] [PubMed] [Google Scholar]
- M. Biasin, A. Bianco, G. Pareschi, A. Cavalleri, C. Cavatorta, C. Fenizia, P. Galli, L. Lessio, M. Lualdi, E. Tombetti, A. Ambrosi, E. M. A. Redaelli, I. Saulle, D. Trabattoni, A. Zanutta, M. Clerici, UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication, Sci Rep, vol. 11, 6260 (2021) [CrossRef] [Google Scholar]
- F. O. Holmes, Accuracy in quantitative work with Tobacco Mosaic Virus, Botanical Gazette, 86, 66 (1928) [CrossRef] [Google Scholar]
- K.-B. G. Scholthof, Spicing up the N gene: F. O. Holmes and Tobacco mosaic virus resistance in Capsicum and Nicotiana plants, Phytopathology, 107, 148 (2016) [Google Scholar]
- N. Toshpulatov, O. Tursunov, D. Kodirov, G. Kholmuratova, Environmentally friendly technology for the destruction of tobacco mosaic viruses (TMV) from selected species of plants, IOP Conf Ser Earth Environ Sci, 614, 012133 (2020) [CrossRef] [Google Scholar]
- L. Eisenlöffel, T. Reutter, M. Horn, S. Schlegel, U. Truyen, S. Speck, “Impact of UVC-sustained recirculating air filtration on airborne bacteria and dust in a pig facility, PLoS One, 14, e0225047 (2019) [CrossRef] [PubMed] [Google Scholar]
- J. Hadi, M. Dunowska, S. Wu, G. Brightwell, Control measures for SARS-CoV-2: A review on light-based Inactivation of single-stranded RNA viruses, Pathogens, vol. 9, p. 737, Sep. 2020, doi: 10.3390/pathogens9090737. [CrossRef] [PubMed] [Google Scholar]
- A. D. McLaren and W. N. Takahashi, Inactivation of infectious nucleic acid from Tobacco Mosaic Virus by ultraviolet light (2537 A), Radiat Res, 6, 532 (1957) [CrossRef] [PubMed] [Google Scholar]
- J. Dijkstra, The early events of Tobacco Mosaic Virus infection in Nicotiana glutinosa L. (Mededelingen van de Landbouwhogeschool Wageningen; No. 64-2). Veenman. Master thesis, University of Wageningen, 1964. https://edepot.wur.nl/292568,” [Google Scholar]
- J. M. Palmer, B. G. Grant, The art of radiometry (SPIE, 2009) [CrossRef] [Google Scholar]
- E. Hecht, Optics (4th ed. Addison Wesley, 2002) [Google Scholar]
- M. M. Jensen, Inactivation of airborne viruses by ultraviolet irradiation, Appl Microbiol, 12, 418 (1964) [CrossRef] [PubMed] [Google Scholar]
- C. H. Thatcher, B. R. Adams, Impact of surface reflection on microbial inactivation in a UV LED treatment duct, Chem Eng Sci, 230, 116204 (2021) [CrossRef] [Google Scholar]
- C. J. Noakes, M. A. I. Khan, C. A. Gilkeson, Modeling infection risk and energy use of upper-room Ultraviolet Germicidal Irradiation systems in multi-room environments, Sci Technol Built Environ, 21, 99 (2015) [CrossRef] [Google Scholar]
- Y. Xie, X. Zhu, P. Zhang, S. Wang, J. Yang, J. Li, Cost-effective instant air disinfection for building ventilation system by a combination of UV and micro-static electricity, Chemical Engineering Journal, 454, 140231, (2023) [CrossRef] [Google Scholar]
- R. Kessler, The Minamata convention on mercury: A first step toward protecting future generations, Environ Health Perspect, 121, p. A304, (2013) [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.