Open Access
Issue |
E3S Web of Conf.
Volume 524, 2024
VII International Conference on Actual Problems of the Energy Complex and Environmental Protection (APEC-VII-2024)
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 9 | |
Section | Ecology, Environmental Protection and Conservation of Biological Diversity | |
DOI | https://doi.org/10.1051/e3sconf/202452402021 | |
Published online | 16 May 2024 |
- R. Shirmohammadi, A. Aslani, R. Ghasempouret, Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant, J Therm Anal Calorim 145, 1585–1597 (2021) [CrossRef] [Google Scholar]
- The Global Status of CCS Report, Global CCS Institute, https://www.globalccsinstitute.com/resources/global-status-report/ [Google Scholar]
- C. Hepburn, The technological and economic prospects for CO2 utilization and removal, Nature, 575(7781), 87–97 (2019) [CrossRef] [PubMed] [Google Scholar]
- X. Meng, D. Luo, An evaluation method of CO2-EOR social benefit for authoritative incentive policy-making, Clean Techn Environ Policy 15, 1083–1089 (2013) [CrossRef] [Google Scholar]
- A.N. Drozdov, E.I. Gorelkina, Development of a pump-ejector system for SWAG technology into reservoir using associated petroleum gas from the annular space of production wells, Journal of mining institute, 254, 191-201 (2022) [Google Scholar]
- S.A. Stevenson, Thermodynamic considerations in CO2 utilization, AIChE Journal, 65, e16695 (2019) [CrossRef] [Google Scholar]
- Global CCS Institute, The Global Status of CCS: 2019, Australia, https://www.globalccsinstitute.com/resources/global-status-report [Google Scholar]
- S. Klubkov, K. Emelyanov, N. Zotov, CCUS: monetization of CO2 emissions, VYGON Consulting, https://vygon.consulting/upload/iblock/967/jzgys72b7ome167wi4dbao9fnsqsfj13/vygo n_consulting_CCUS.pdf (2021) [Google Scholar]
- Global CCS Institute., CO2RE Database, Facilities Report, https://CO2RE.co/FacilityData (2019) [Google Scholar]
- A. E. Cherepovitsyn, A. A. Ilinova, N. V. Smirnova, Approaches to the economic assessment of carbon dioxide sequestration, Russian Economic Online Journal, 4, 1–10 (2014) [Google Scholar]
- A. Kh. Shakhverdiev, G. M. Panahov, E. M. Abbasov, R. Jiang, S. Bakhtiyarov, High efficiency EOR and IOR technology on in-situ CO2 generation, Oil Industry, 5, 90–95 (2014) [Google Scholar]
- A. Kh. Shakhverdiev, G. M Panakhov, E. M. Abbasov, I. E. Mandrik, S.I. Bakhtiyarov, Integrative efficiency of bed stimulation at intrastratal gas generation, Oil Industry, 11, 76–78 (2006) [Google Scholar]
- M.P.S. Santos, D.P. Hanak, Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles, Front. Chem. Sci. Eng. 16, 1291–1317 (2022) [CrossRef] [Google Scholar]
- M.I. Nandasiri, S.R. Jambovane, B.P. McGrail, H.T. Schaef, S.K. Nune, Adsorption, separation, and catalytic properties of densified metal-organic frameworks, Coord. Chem. Rev. 311, 38–52 (2016) [CrossRef] [Google Scholar]
- A.A. Fedorchenko, Possibilities for the rational and efficient use of carbon dioxide in various sectors of the Russian economy, Economic Bulletin of Rostov State University, 6 (1), 3, 112–116 (2008) [Google Scholar]
- K.I. Sidorova, Economic assessment of the use of carbon dioxide utilization technology in oil fields to enhance oil recovery, Thesis of a candidate of economic sciences, St. Petersburg (2016) [Google Scholar]
- A.E. Cherepovitsyn et al., Key socio-economic aspects of the development of carbon dioxide sequestration, St. Petersburg: LEMA, 229 (2019) [Google Scholar]
- L. Zhang, Y. Song, J. Shi, Frontiers of CO2 Capture and Utilization (CCU) towards Carbon Neutrality, Adv. Atmos. Sci. 39, 1252–1270 (2022) [CrossRef] [Google Scholar]
- S. Deutz, A. Bardow, Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption, Nature Energy, 6, 203−213 (2021) [CrossRef] [Google Scholar]
- X.Y. Shi, H. Xiao, H. Azarabadi, J.Z. Song, X.L. Wu, X. Chen, K.S. Lackner, Sorbents for the direct capture of CO2 from ambient air, Angewandte Chemie International Edition, 59, 6984−7006 (2020) [CrossRef] [PubMed] [Google Scholar]
- Climeworks, Direct air capture: a technology to remove CO2, Accessed from: https://climeworks.com/co2-removal (2021) [Google Scholar]
- D.W.Keith, G. Holmes, D.S. Angelo, K. Heidel, A process for capturing CO2 from the atmosphere, Joule, 2 (8), 1573−1594 (2018) [CrossRef] [Google Scholar]
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444 (2013) [CrossRef] [PubMed] [Google Scholar]
- S. Yuan, Stable metal–organic frameworks: Design, synthesis, and applications, Advanced Materials, 30, 1704303 (2018) [CrossRef] [Google Scholar]
- D. Sensharma, N.Y. Zhu, S. Tandon, S. Vaesen, G.W. Watson, W. Schmitt, Flexible metal–organic frameworks for light-switchable CO2 sorption using an auxiliary ligand strategy, Inorganic Chemistry, 58, 9766−9772 (2019) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.