Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/e3sconf/202452601011 | |
Published online | 20 May 2024 |
- Sakhno, I., & Sakhno, S. (2023). Numerical studies of floor heave control in deep mining roadways with soft rocks by the rock bolts reinforcement technology. Advances in Civil Engineering, 2023, 1–23. https://doi.org/10.1155/2023/2756105 [CrossRef] [Google Scholar]
- Qi, F., Ma, Z., Yang, D., Li, N., Li, B., Wang, Z., & Ma, W. (2021). Stability control mechanism of high-stress roadway surrounding rock by roof fracturing and rock mass filling. Advances in Civil Engineering, 2021, 1–17. https://doi.org/10.1155/2021/6658317 [Google Scholar]
- Wang, Q., Jiang, B., Pan, R., Li, S.C., He, M.C., Sun, H.B., Qin, Q., Yu, H.C., & Luan, Y.C. (2018). Failure mechanism of surrounding rock with high stress and confined concrete support system. International Journal of Rock Mechanics and Mining Sciences, (102), 89–100. https://doi.org/10.1016/j.ijrmms.2018.01.020 [CrossRef] [Google Scholar]
- He, M., Gao, Y., Yang, J., Wang, J., Wang, Y., & Zhu, Z. (2018). Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face. Rock and Soil Mechanics, (39), 254–264. [Google Scholar]
- Yuan, L. (2016). Control of coal and gas outbursts in Huainan mines in China: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 559–567. https://doi.org/10.1016/j.jrmge.2016.01.005 [CrossRef] [Google Scholar]
- Ning, J., Wang, J., Bu, T., Hu, S., & Liu, X. (2017). An innovative support structure for gob-side entry retention in steep coal seam mining. Minerals, 7(5), 75. https://doi.org/10.3390/min7050075 [CrossRef] [Google Scholar]
- Gong, P., Ma, Z., Ni, X., & Zhang, R.R. (2017). Floor heave mechanism of gob-side entry retaining with fully-mechanized backfilling mining. Energies, (10), 2085. http://doi:10.3390/en10122085 [CrossRef] [Google Scholar]
- Li, Z., Zhang, Y., Ma, Q., Zheng, Y., Song, G., Yan, W., Zhang, Y., & Hu, L. (2023). The floor heave mechanism and control technology of gob-side entry retaining of soft rock floor. Sustainability, 15(7), 6074. https://doi.org/10.3390/su15076074 [CrossRef] [Google Scholar]
- Yu, G., Wang, J., Hu, J., Zhu, D., Sun, H., Ma, X., Ming W., & Li W. (2021). Innovative control technique for the floor heave in goaf-side entry retaining based on pressure relief by roof cutting. Mathematical Problems in Engineering, 2021, 1–17. https://doi.org/10.1155/2021/7163598 [Google Scholar]
- Faria Santos, C., & Bieniawski, Z.T. (1989). Floor design in underground coal mines. Rock Mechanics and Rock Engineering, 22(4), 249–271. https://doi.org/10.1007/bf01262282 [CrossRef] [Google Scholar]
- Mo, S., Ramandi, H.L., & Oh, J. (2018). A Review of Floor Heave Mechanisms in Underground Coal Mine Roadways. In The Fourth Australasian Ground Control in Mining Conference (pp. 196–206). Sydney, New South Wales, Australia: The Australasian Institute of Mining and Metallurgy. [Google Scholar]
- Mo, S., Ramandi, H.L., Oh, J., Masoumi, H., Canbulat, I., Hebblewhite, B., & Saydam, S. (2020). A new coal mine floor rating system and itsapplication to assess the potential of floor heave. International Journal of Rock Mechanics and Mining Sciences, (128), 104241. https://doi.org/10.1016/j.ijrmms.2020.104241 [CrossRef] [Google Scholar]
- Sakhno, I., Liashok, Ia., Sakhno, S., & Isaienkov, O. (2022). Method for controlling the floor heave in mine roadways of underground coal mines. Mining of Mineral Deposits, 16(4), 1–10. https://doi.org/10.33271/mining16.04.001 [CrossRef] [Google Scholar]
- Babets, D., Sdvyzhkova, O., Hapieiev, S., Shashenko, O., & Prykhodchenko, V. (2023). Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study. Mining of Mineral Deposits, 17(2), 9–19. https://doi.org/10.33271/mining17.02.009 [CrossRef] [Google Scholar]
- Cicek, S., Tulu, I.B., Van Dyke, M., Klemetti, T., & Wickline, J. (2020). Application of the coal mine floor rating (CMFR) to assess the floor stability in a Central Appalachian Coal Mine. International Journal of Mining Science and Technology, 31(1), 83–89. https://doi.org/10.1016/j.ijmst.2020.12.022 [Google Scholar]
- Sakhno, I., Sakhno, S., Skyrda, A., & Popova, O. (2022). Numerical modeling of controlling a floor heave of coal mine roadways with a method of reinforcing in wet soft rock. Geofluids, 2022, 1–14. https://doi.org/10.1155/2022/3855799 [CrossRef] [Google Scholar]
- Małkowski, P., Ostrowski, Ł., & Stasica, J. (2022). Modeling of floor heave in underground roadways in dry and waterlogged conditions. Energies, 15(12), 4340. https://doi.org/10.3390/en15124340 [CrossRef] [Google Scholar]
- Chang, Z., Yan, C., Xie, W., Lu, Z., Lan, H., & Mei, H. (2024). Large-scale field tunnel model experience and time-dependent floor heave induced by humidification. Tunnelling and Underground Space Technology, (145), 105615. https://doi.org/10.1016/j.tust.2024.105615 [CrossRef] [Google Scholar]
- Yue, J., Liang, Q., Zhang, T., & Fan, C. (2024). Research on mechanical response and time-space distribution of supporting structure of deep-buried tunnel in naturally water-rich loess, Tunnelling and Underground Space Technology, (147), 105688, https://doi.org/10.1016/j.tust.2024.105688 [CrossRef] [Google Scholar]
- Zhang, Z., Sun, J., Ma, Y., Wang, Q., Li, H., & Wang, E. (2024). Research on the Influence Mechanism of Moisture Content on Macroscopic Mechanical Response and Microscopic Evolution Characteristic of Limestone. Buildings, 14(2), 469. https://doi.org/10.3390/buildings14020469 [CrossRef] [Google Scholar]
- Chen, Y., Li, Q., Pu, H., Wu, P., Chen, L., Qian, D., Shi, X., Zhang, K. & Mao, X. (2020). Modeling and simulation of deformation mechanism of soft rock roadway considering the mine water. Geofluids, 2020, 1–22. https://doi.org/10.1155/2020/8812470 [Google Scholar]
- Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
- Kononenko, M., Khomanko, O., Cabana, E., Mirek A., Dyczko A., Prostański, D. & Dychkovskyi R. (2023) Using the methods to calculate parameters of drilling and + blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
- Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y., & Smoliński, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
- Xie, S., Li, H., Chen, D., Feng, S., Ma, X., Jiang, Z., & Cui, J. (2022). New technology of pressure relief control in soft coal roadways with deep, violent mining and large deformation: A Key Study. Energies, 15(23), 9208. https://doi.org/10.3390/en15239208 [CrossRef] [Google Scholar]
- Yang, T., & Zhang, J. (2021). Research on the treatment technology of soft rock floor heave based on a model of pressure-relief slots. Arabian Journal of Geosciences, 14(13), 1278. https://doi.org/10.1007/s12517-021-07673-4 [CrossRef] [Google Scholar]
- Guo, D., Kang, X., Lu Z., & Chen, Q. (2021). Mechanism and control of roadway floor rock burst induced by high horizontal stress. Shock and Vibration., (5), 1–13. https://doi.org/10.1155/2021/6745930 [Google Scholar]
- Li, Z., Zhang, Y., Ma, Q., Zheng, Y., Song, G., Yan, W., Zhang, Y., & Hu, L. (2023). The Floor Heave Mechanism and Control Technology of Gob-Side Entry Retaining of Soft Rock Floor. Sustainability, 15(7), 6074. https://doi.org/10.3390/su15076074 [CrossRef] [Google Scholar]
- Lai, X., Xu, H., Shan, P., Kang, Y., Wang, Z., & Wu, X. (2020). Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face. Energies, 13(2), 381. https://doi.org/10.3390/en13020381 [CrossRef] [Google Scholar]
- He, M.C., Zhang, G.F., Wang, G.L., Xu, Y.L., Wu, C.Z., & Tang, Q.D. (2009). Research on mechanism and application to floor heave control of deep gateway. Chinese Journal of Mechanical Engineering, (28), 2593–2598. [Google Scholar]
- Yang, J., Zhou, K., Cheng, Y., Gao, Y., Wei, Q., & Hu, Y. (2019). Mechanism and control of roadway floor heave in the paleogene soft rock surroundings. Geotechnical and Geological Engineering, 37(6), 5167–5185. https://doi.org/10.1007/s10706-019-00970-6 [CrossRef] [Google Scholar]
- Shimada, H., Hamanaka, A., Sasaoka, T., & Matsui, K. (2014). Behaviour of grouting material used for floor reinforcement in underground mines. International Journal of Mining, Reclamation and Environment, 28(2), 133–148. https://doi.org/10.1080/17480930.2013.804257 [CrossRef] [Google Scholar]
- Zhang, Z.Y., & Shimada, H. (2018). Numerical study on the effectiveness of grouting reinforcement on the large heaving floor of the deep retained goaf-side gateroad: A case study in China. Energies, (11), 1001. https://doi.org/10.3390/en11041001 [CrossRef] [Google Scholar]
- Zhai, X.X., Qin, L.T., & Chen, C.Y. (2017). Combined Supporting Technology of Anchoring and Grouting and Floor Relief in Deep Chamber of Belt Conveyor. Chinese Journal of Underground Space and Engineering, (5), 1363–1372. [Google Scholar]
- Kang, X., Guo, D., & Lu, Z. (2021). Mechanism of roadway floor heave controlled by floor corner pile in deep roadway under high horizontal stress. Advances in Civil Engineering, 2021, 1–10. https://doi.org/10.1155/2021/6669233 [Google Scholar]
- Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of Remote Work to Ensure Mobility in Project Activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
- Xu, Y., Chen, J., & Bai, J. (2016). Control of floor heaves with steel pile ingob–side entry retaining. International Journal of Mining Science and Technology, 26(3), 527–534. https://doi.org/10.1016/j.ijmst.2016.02.024 [CrossRef] [Google Scholar]
- Zhu, B., Weifeng, K., Jiami, X., & Yanjun, S. (2016). Numerical simulation research of construction method for shallow buried large section tunnel. The Open Civil Engineering Journal, 10(1), 578–597. https://doi.org/10.2174/1874149501610010578 [CrossRef] [Google Scholar]
- Sakhno, I.G., Molodetskyi, А.V., & Sаkhno, S.V. (2018). Identification of material parameters for numerical simulation of the behavior of rocks under true triaxial conditions. Naukovyi Visnyk Hatsionalnoho Hirnychoho Universytetu, (5), 48–53. https://doi.org/10.29202/nvngu/2018-5/4 [CrossRef] [Google Scholar]
- Li, J., Huang, Y., Zhai, W., Li, Y., Ouyang, S., Gao, H., Li, W., Ma, K., & Wu, L. (2020) Experimental study on acoustic emission of confined compression of crushed gangue under different loading rates: Disposal of gangue solid waste. Sustainability, 12(9), 3911. https://doi.org/10.3390/su12093911 [Google Scholar]
- Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion – 2002 edition. In Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference (pp. 267–271). Toronto, Canada. [Google Scholar]
- Hoek, E., & Diederichs, M. (2006). Empirical estimates of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203–215. https://doi.org/10.1016/j.ijrmms.2005.06.005 [CrossRef] [Google Scholar]
- Sakhno, I., Isayenkov, O., & Rodzin, S. (2017). Local reinforcing of footing supported in the destroyed rock massif. Mining of Mineral Deposits, 11(1), 9–16. https://doi.org/10.15407/mining11.01.009 [CrossRef] [Google Scholar]
- Litvinsky, G.G., & Fesenko, E.V. (2010). Prognoz pucheniya porod pochvy gornykh vyrabotok – veroyatnostnyy aspekt. Zbirnyk naukovykh prats DonDTU, 4–13. [Google Scholar]
- Li, C.C., Stjern, G. & Myrvang A. (2014). A review on the performance of conventional and energy-absorbing rockbolts. Journal of Rock Mechanics and Geotechnical Engineering, 6(4), 315–327. https://doi.org/10.1016/j.jrmge.2013.12.008 [CrossRef] [Google Scholar]
- He, M., Gong, W., Wang, J. Qi, P., Tao, Zh. Du, Sh., & Peng, Y. (2014). Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Journal of Rock Mechanics and Mining Sciences, (67), 29–42. https://doi.org/10.1016/j.ijrmms.2014.01.007 [CrossRef] [Google Scholar]
- Sakhno, I., Sakhno, S., Isaienkov, O., & Kurdiumow, D. (2019). Laboratory studies of a highstrength roof bolting by means of self-extending mixtures. Mining of Mineral Deposits, 13(2), 17–26. https://doi.org/10.33271/mining13.02.017 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.