Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01025
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202452601025
Published online 20 May 2024
  1. Janus, J. (2016). Zastosowanie skaningu laserowego do budowy modelu numerycznego wyrobiska górniczego. Prace Instytutu Mechaniki Górotworu PAN, 18(3), 27–34. [Google Scholar]
  2. Marciniak, B. (2016). Narzędzia wspomagające proces projektowania obudowy wyrobisk podziemnych w warunkach kopalni “Bogdanka”. Wiadomosci. Górnicze, 67(2), 108–114. [Google Scholar]
  3. Sobczyk, E. J., Galica, D., Kopacz, M., & Sobczyk, W. (2022). Selecting the Optimal Exploitation Option Using a Digital Deposit Model and the Ahp. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4047752 [Google Scholar]
  4. Zalevsky, Z., Buller, G. S., Chen, T., Cohen, M., & Barton-Grimley, R. (2021). Light detection and ranging (lidar): Introduction. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 38(11), LID1–LID2. https://doi.org/10.1364/josaa.445792 [CrossRef] [PubMed] [Google Scholar]
  5. Richert, M., & Dudek, M. (2023). Risk Mapping: Ranking and Analysis of Selected, Key Risk in Supply Chains. Journal of Risk and Financial Management, 16(2), 71. https://doi.org/10.3390/jrfm16020071 [CrossRef] [Google Scholar]
  6. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  7. Killinger, D.K. (2014). Lidar (light detection and ranging). Laser Spectroscopy for Sensing, 292–312. https://doi.org/10.1533/9780857098733.2.292 [CrossRef] [Google Scholar]
  8. Dudek, M. (2017). The analysis of the low-cost flexibility corridors. In 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (pp. 478–483). Gdynia, Poland: Gdynia Maritime University. https://doi.org/10.1109/inista.2017.8001207 [Google Scholar]
  9. Baltiyeva, A., Orynbassarova, E., Zharaspaev, M., & Akhmetov, R. (2023). Studying sinkholes of the earth’s surface involving radar satellite interferometry in terms of Zhezkazgan field, Kazakhstan. Mining of Mineral Deposits, 17(4), 61–74. https://doi.org/10.33271/mining17.04.061 [CrossRef] [Google Scholar]
  10. Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
  11. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of Remote Work to Ensure Mobility in Project Activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  12. Galica, D., & Sypniowski S. (2012). Deposit model as a first step in mining production scheduling. (2012). Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
  13. Koch, G.J. (2006). Using a Doppler light detection and ranging (lidar) system to characterize an atmospheric thermal providing lift for soaring raptors. Journal of Field Ornithology, 77(3), 315–318. https://doi.org/10.1111/j.1557-9263.2006.00058.x [CrossRef] [Google Scholar]
  14. Lee, Y., Woo, H., & Lee, J.-S. (2022). Forest Inventory Assessment Using Integrated Light Detection and Ranging (LiDAR) Systems: Merged Point Cloud of Airborne and Mobile Laser Scanning Systems. Sensors and Materials, 34(12), 4583. https://doi.org/10.18494/sam4100 [CrossRef] [Google Scholar]
  15. Choi, H., Song, Y., & Jang, Y. (2019). Urban Forest Growth and Gap Dynamics Detected by Yearly Repeated Airborne Light Detection and Ranging (LiDAR): A Case Study of Cheonan, South Korea. Remote Sensing, 11(13), 1551. https://doi.org/10.3390/rs11131551 [CrossRef] [Google Scholar]
  16. Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591 [CrossRef] [Google Scholar]
  17. Nurpeissova, M., Rysbekov, К., Levin, Е., Derbisov, K., & Nukarbekova, Zh. (2021). Study of slow motions of the earth surface. Vestnik KazNRTU, 143(5), 3–9. https://doi.org/10.51301/vest.su.2021.i5.01 [CrossRef] [Google Scholar]
  18. Strach, M., & Zaczek-Peplinska, J. (2017). Zastosowanie technologii naziemnego skaningu laserowego w wybranych zagadnieniach geodezji inżynieryjnej. Warszawa, Polska: Oficyna Wydawnicza Politechniki Warszawskiej, 217 s. [Google Scholar]
  19. Skanowanie laserowe 2018. Retrieved from https://geoforum.pl/dodatek/7/3434/skanowanie-laserowe-2018 [Google Scholar]
  20. GeoSlam. (2024). Retrieved from http://geoslam.com [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.