Open Access
Issue |
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Natural & Environmental Resources Management | |
DOI | https://doi.org/10.1051/e3sconf/202452701006 | |
Published online | 24 May 2024 |
- E. Custodio, Aquifer overexploitation: what does it mean?. Hydrogeol. J. 10, 254-277 (2002). https://doi.org/10.1007/s10040-002-0188-6 [CrossRef] [Google Scholar]
- R. Trabelsi, K. Zouari, Coupled geochemical modelling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundw. Sustain. Dev. 8, 413-427 (2019). https://doi.org/10.1016/j.gsd.2019.01.006 [CrossRef] [Google Scholar]
- A. Mora, J. Mahlknecht, R. Ledesma-Ruiz, W. E. Sanford, L. E. Lesser, Dynamics of major and trace elements during seawater intrusion in a coastal sedimentary aquifer impacted by anthropogenic activities. J. Contam. Hydrol. 232, 103653 (2020). https://doi.org/10.1016/j.jconhyd.2020.103653 [CrossRef] [Google Scholar]
- Y. Lucas, A. D. Schmitt, F. Chabaux, A. Clément, B. Fritz, P. Elsass, S. Durand, Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France). J. Appl. Geochem. 25, 1644-1663 (2010). https://doi.Org/10.1016/J.APGEOCHEM.2010.08. 013 [CrossRef] [Google Scholar]
- J. Wu, J. Lu, X. Wen, Z. Zhang, Y. Lin, Severe Nitrate Pollution and Health Risks of Coastal Aquifer Simultaneously Influenced by Saltwater Intrusion and Intensive Anthropogenic Activities. Arch. Environ. Contam. Toxicol. 77, 79-87 (2019). https://doi.org/10.1007/s00244-019-00636-7 [CrossRef] [PubMed] [Google Scholar]
- E. Kwon, J. Park, W. Park, B. Kang, N.C. Woo, Nitrate contamination of coastal groundwater: Sources and transport mechanisms along a volcanic aquifer. Sci. Total Environ. 768, 145204 (2021). https://doi.org/10.1016/j.scitotenv.2021.145204 [CrossRef] [Google Scholar]
- M. Erostate, F. Huneau, É. Garel, M.F. Lehmann, T.J. Kuhn, L. Aquilina, V. Vergnaud-Ayraud, T. Labasque, S. Santoni, S. Robert, D. Provitolo, V. Pasqualini, Delayed nitrate dispersion within a coastal aquifer provides constraints on land-use evolution and nitrate contamination in the past. Sci. tot. environ. 644, 928-940 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.375 [CrossRef] [Google Scholar]
- P.J. Thorburn, J.S. Biggs, K. Weier, B.A. Keating, Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agric. Ecosyst. Environ. 94, 49-58 (2003). https://doi.org/10.1016/S0167-8809(02)00018-X [CrossRef] [Google Scholar]
- J. Liu, Z. Gao, Z. Wang, X. Xu, Q. Su, S. Wang, W. Qu, T. Xing, Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China, Environ. Monit. Assess. 192, 1-17 (2020). https://doi.org/10.1007/s10661-020-08356-5 [CrossRef] [Google Scholar]
- Ş. Şener, E. Şener, A. Davraz, Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 584, 131-144 (2017). https://doi.org/10.1016/j.scitotenv.2017.01.102 [CrossRef] [Google Scholar]
- P. Carlier, Plaines de Gareb et de Bou-Areg (Gareb and Bou-Areg plains). Ressources en eaux du Maroc. Domaine du Rif et du Maroc Oriental Tome1. Note et Mémoire Serv. Géol. Maroc (1971) [Google Scholar]
- A. El Mandour, F. El Yaouti, Y. Fakir, Y. Zarhloule, J. Benavente, Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg, Northeastern Mediterranean coast, Morocco. Environ. Geol. 54(3), 491-503 (2008). https://doi.org/10.1007/s00254-007-0842-3 [CrossRef] [Google Scholar]
- F. El Yaouti, A. El Mandour, D. Khattach, J. Benavente, O. Kaufmann, Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Appl. Geochem. 24(1), 16-31 (2009). https://doi.org/10.1016/j.apgeochem.2008.10.005 [CrossRef] [Google Scholar]
- V. Re, E. Sacchi, J. Martin-Bordes, A. Aureli, N. El Hamouti, R. Bouchnan, G.M. Zuppi, Processes affecting groundwater quality in arid zones: the case of the Bou-Areg coastal aquifer (North Morocco). Appl. Geochem. 34, 181-198 (2013). https://doi.org/10.1016/j.apgeochem.2013.03.011 [CrossRef] [Google Scholar]
- M. Elmeknassi, L. Bouchaou, A. El Mandour, M. Elgettafi, M. Himi, A. Casas, Multiple stable isotopes and geochemical approaches to elucidate groundwater salinity and contamination in the critical coastal zone: a case from the Bou-areg and Gareb aquifers (North-Eastern Morocco). Environ. Pollut. 300, 118942 (2022). https://doi.org/10.1016/j.envpol.2022.118942 [CrossRef] [Google Scholar]
- J. Rampnoux, J. Angelier, B. Colletta, S. Fudral, M. Guillemin, G. Pierre, L'histoire tectonique récente (Tortonien à Quaternaire) de l'arc de Gibraltar et des bordures de la mer d'Alboran. Bull.Soc.geol.Fr. 19, 594-598 (1977) [CrossRef] [Google Scholar]
- D.F. DeLamotte, Contribution a l'étude de l'évolution structurale du Rif oriental (Maroc). Ph.D. thesis, Univ. Paris XI (1979) [Google Scholar]
- P. DeLuca, Preuve de l'autochtonie de l'unité chaotique des Kebdana (Maroc oriental), équivalent oriental de l'olistostrome prerifain. Comptes-rendus des séances de l'Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l'univers, sciences de la terre, 299(7), 331-336 (1984) [Google Scholar]
- S. Kerchaoui, Etude géologique et structurale du massif des Beni Bou Ifrour (Rif oriental, Maroc). Ph.D. thesis, Univ. Paris Sud, Orsay (1985) [Google Scholar]
- M. Guillemin, R. Wernli, Le sondage de Kariat Arekmane et le Neogene du bassin de Nador(Maroc oriental). Notes et Mémoires Service Géologique du Maroc, 43(321), 255-262 (1987). [Google Scholar]
- Y. Hervouet, P. Broquet, G. Duee, G. Mascle, Comparaison entre l'evolution des avant-fosses Sicilienne et Rifaine Memorie della Societa Geologica Italiana, 38, 107-125 (1987) [Google Scholar]
- A. Yahyaoui, M. Dakki, C. Hoepffner, A., Demnati, Le Bassin du Gareb-Bou Areg (Rif oriental): une région-clé pour l'interprétation de la structuration alpine de la chaine rifaine. Geol. Mediterr. 24 (1-2), 73-92 (1997) [Google Scholar]
- J. Marcais, G. Suter, Description de l'itinéraire, Maroc séptentrional (chaîne du Rif). 19ème Congr. Géol. Intern., Alger, livret-guide, sér. Maroc, 7, 19-60 (1952) [Google Scholar]
- A. Chamrar, M. Oujidi, A. El Mandour, A., Jilali, 3D geological modelling of Gareb-Bouareg basin in northeast Morocco. J. Afr. Earth Sci. 154, 172-180 (2019). https://doi.org/10.1016/j.jafrearsci.2019.03.023 [CrossRef] [Google Scholar]
- B.C. Boumediene, Y. Khoukhi, A. Chafi, M. Arabi, Study of the spatiotemporal variation of iron and manganese ions content in the Oued Moulouya water (Norfh-East of Morocco). E3S Web of Conferences, 364, 02002, (2023). https://doi.org/10.1051/e3sconf/202336402002 [CrossRef] [EDP Sciences] [Google Scholar]
- A. Chaieb, M. Arabi, O. Gamagami, S. Benyoussef, A. Aknaf, A. Moumen, Assessing the Environmental Impacts of Treated Wastewater Reuse on Water-Soil-Plant Ecosystems in Oued Bou Naim, Eastern Morocco. Ecol. Eng. Environ. Tech. 25(5), 208-219 (2024). https://doi.org/10.12912/27197050/185883 [CrossRef] [Google Scholar]
- O. WHO, One health. World Health Organization, 736, (2017) [Google Scholar]
- R. Karagüzel, A. Irlayici, Groundwater pollution in the Isparta Plain, Turkey. Environ. Geol. 34(4), 303-308 (1998) [CrossRef] [Google Scholar]
- N. Rajmohan, L. Elango, Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ. Geol. 46, 47-61 (2004). https://doi.org/10.1007/s00254-004-1012-5 [Google Scholar]
- J. Jankowski, S. Shekarforoush, R. Acworth, Reverse ion-exchange in a deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Australia, Water-Rock interaction, 243-246 (1998) [Google Scholar]
- L. Wang, Y. Dong, Y. Xie, F. Song, Y. Wei, J. Zhang, Distinct groundwater recharge sources and geochemical evolution of two adjacent subbasins in the lower Shule River Basin, northwest China. Hydrogeol. J. 24(8), 1967-1979 (2016). https://doi.org/10.1007/s10040-016-1456-1 [CrossRef] [Google Scholar]
- D. L. Parkhurst, C. A. J. Appelo, Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497 (2013) [Google Scholar]
- Y. N. Wei, W. Fan, W. Wang, L. Deng, Identification of nitrate pollution sources of groundwater and analysis of potential pollution paths in loess regions: a case study in Tongchuan region, China. Environ. Earth Sci. 76, 1-13 (2017). https://doi.org/10.1007/s12665-017-6756-9 [CrossRef] [Google Scholar]
- A. Gibrilla, J. R. Fianko, S. Ganyaglo, D. Adomako, G. Anornu, N. Zakaria, Nitrate contamination and source apportionment in surface and groundwater in Ghana using dual isotopes (15 N and 18O-NO3) and a Bayesian isotope mixing model. J. Contam. Hydrol. 233, 103658 (2020). https://doi.org/10.1016/j.jconhyd.2020.103658 [CrossRef] [Google Scholar]
- L. Lu, H. Cheng, X. Pu, X. Liu, Q. Cheng, Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environ. Sci. Process Impacts. 17(1), 131-144 (2015), https://doi.org/10.1039/C4EM00502C [CrossRef] [PubMed] [Google Scholar]
- Y. Xia, Y. Li, X. Zhang, X. Yan, Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems. J. Geophys. Res. G: Biogeosciences 122(1). 2-14 (2017). https://doi.org/10.1002/2016JG003447 [CrossRef] [Google Scholar]
- K. R. Burow, J. L. Shelton, N. M. Dubrovsky, Occurrence of nitrate and pesticides in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993-1995, 97. US Department of the Interior, US Geological Survey (1998) [Google Scholar]
- K. R. Burow, S. V. Stork, N. M. Dubrovsky, Nitrate and pesticides in ground water of the eastern San Joaquin Valley, California: Occurrence and trends, 98. US Department of the Interior, US Geological Survey (1998). https://doi.org/10.3133/wri984040A [Google Scholar]
- K. Lockhart, A. King, T. Harter, Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 151, 140-154 (2013). https://doi.org/10.1016/j.jconhyd.2013.05.008 [CrossRef] [Google Scholar]
- M. Arabi, M. Sbaa, M. Vanclooster, A. Darmous, Impact of the municipal solid waste typology on leachate flow under semiarid climate -A case study. J. Ecol. Eng. 21, 94-101 (2020). https://doi.org/10.12911/22998993/123250 [CrossRef] [Google Scholar]
- M. J. Donn, N. W. Menzies, Simulated rainwater effects on anion exchange capacity and nitrate retention in Ferrosols. Aust. J. Soil Res. 43(1), 33-42 (2005). https://doi.org/10.1071/SR04015 [CrossRef] [Google Scholar]
- P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced removal of nitrate from water using surface modification of adsorbents - A review, J. Environ. Manage. 131, 363-374 (2013), https://doi.org/10.1016/j.jenvman.2013.09.034 [Google Scholar]
- L. Aller, T. Bennett, J.H. Lehr, R.H. Petty, G. Hackett, DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Setting. USEPA Report 600/2-87/035, (Robert S. Kerr Environmental Research Laboratory, Ada, (1987) [Google Scholar]
- M. Kadaoui, A. Bouali, M. Arabi, Assessment of physicochemical and bacteriological groundwater quality in irrigated Triffa Plain, North-East of Morocco. J. Water Land. Dev. 42, 100-109, (2019). https://doi.org/10.2478/jwld-2019-0050 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.