Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 03007
Number of page(s) 5
Section Green Production for Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202452703007
Published online 24 May 2024
  1. J. Liang, W. Shi, Cotton/halophytes intercropping decrease salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crop Res. 262, 108027 (2021). https://doi.org/10.1016/j.fcr.2020.108027 [CrossRef] [Google Scholar]
  2. R. Ahmad, S.H. Zaheer, Responses of Sporobolus arabicus and Sesbania aegyptica as affected by density, salinity of irrigation water and intercropping. Pak. J. Bot. 26, 115 (1994) [Google Scholar]
  3. FAO (2008) Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush [Google Scholar]
  4. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J.D. Okken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G. K. Plattner, S.K. Allen, M. Tignor, P.M. Midgley, Managing the risks of extreme events and disasters to advance climate change adaption (Cambridge University Press, Cambridge, 2012) [CrossRef] [Google Scholar]
  5. P. Ai, Y. Ma, Y. Hai, Influence of jujube/cotton intercropping on soil temperature and crop evapotranspiration in an arid area. Agric. Water Manag. 256, 107118 (2021). https://doi.Org/10.1016/j.agwat.2021.107118. [CrossRef] [Google Scholar]
  6. F. Kurdali, M. Janat, K. Khalifa, Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non-saline conditions. Commun. Soil Sci. Plant Anal. 34, 2471 (2003). https://doi.org/10.1081/CSS-120024780 [CrossRef] [Google Scholar]
  7. M.D. Belel, R.A. Halim, M.Y. Rafii, H.M. Saud, Intercropping of corn with some selected legumes for improved forage production: a review. J. Agricul. Sci. 6, 48 (2014). https://doi.org/10.5539/jas.v6n3p48 [Google Scholar]
  8. D. Tilman, C. Balzer, J. Hill, B.L. Befort, Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. (USA). 108, 20260 (2011). https://doi.org/10.1073/pnas.1116437108 [CrossRef] [PubMed] [Google Scholar]
  9. D.K. Ray, N.D. Mueller, P.C. West, J.A. Foley, Yield trends are insufficient to double global crop production by 2050, PLoS One 8, e66428, (2013). https://doi.org/10.1371/journal.pone.0066428 [CrossRef] [PubMed] [Google Scholar]
  10. K. Lichtenthaler, Hartmut, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes” Methods in enzymology. Academic Press, 148, 350–382 (1987). https://doi.org/10.1016/0076-6879(87)48036-1 [CrossRef] [Google Scholar]
  11. D.S. Zhang, Z.X. Sun, L.S. Feng, W. Bai, N. Yang, Z. Zhang, G.J. Du, C. Feng, Q. Cai, Q. Wang, Y. Zhang, R. Wang, A. Arshad, X. Hao, M. Sun, Z. Gao, L. Zhang, Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crop. Res. 257, 107926 (2020). https://doi.org/10.1016/j.fcr.2020.107926. [CrossRef] [Google Scholar]
  12. K. Johansen, M.J. Morton, Y.M. Malbeteau, B. Aragon, S.K. Al-Mashharawi, M.G. Ziliani, M.F. McCabe, Unmanned aerial vehicle-based phenotyping using morphometric and spectral analysis can quantify responses of wild tomato plants to salinity stress. Front. Plant Sci. 10, 449–457 (2019). https://doi.org/10.3389/fpls.2019.00370 [CrossRef] [Google Scholar]
  13. C. Jurado, P. Díaz-Vivancos, G. Barbara-Espin, J.R. Acosta-Motos, J.A. Hernández, Effect of halophyte-based management in physiological and biochemical responses of tomato plants under moderately saline greenhouse conditions. Plant Physiol. Biochem. 206, 108228 (2024). https://doi.org/10.1016/j.plaphy.2023.108228. [CrossRef] [Google Scholar]
  14. W. Yin, Q. Chai, C. Zhao, A. Yu, Z. Fan, F. Hu, H. Fan, Y. Guo, J.A. Coulter. Water utilization in intercropping: A review. Agricul. Water Manag. 241, 106335 (2020). https://doi.org/10.1016/j.agwat.2020.106335 [CrossRef] [Google Scholar]
  15. F.H. Holman, A.B. Riche, A. Michalski, M. Castle, M.J. Wooster, M.J. Hawkesford, High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 8, 1031 (2016). https://doi.org/10.3390/rs8121031 [CrossRef] [Google Scholar]
  16. F. Kurdali, M. Janat, K. Khalifa, Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non-saline conditions. Commun. Soil Sci. Plant Anal. 34, 2471 (2003). https://doi.org/10.1081/CSS-120024780 [CrossRef] [Google Scholar]
  17. R. Ahmad, S.H. Zaheer, Responses of Sporobolus arabicus and Sesbania aegyptica as affected by density, salinity of irrigation water and intercropping. Pak. J. Bot. 26, 115 (1994). [Google Scholar]
  18. C.R. Simpson, J.G. Franco, S.R. King, A. Volder, Intercropping halophytes to mitigate salinity stress in watermelon. Sustainability, 10, 681 (2018). https://doi.org/10.3390/su10030681 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.