Open Access
Issue |
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 8 | |
Section | Green Production for Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202452703010 | |
Published online | 24 May 2024 |
- M. Sivakumar, Climate change, agriculture adaptation, and sustainability (2021). https://doi.org/10.1007/978-981-16-0902-2 6 [Google Scholar]
- F. Aliyari, R. T. Bailey, and M. Arabi, Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Sci. Total Environ. 788, 147717 (2021). https://doi.org/10.1016/j.scitotenv.2021.147717 [CrossRef] [Google Scholar]
- N. W. Arnell and B. Lloyd-Hughes, The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clima. change. 122, 127–140 (2014). https://doi.org/10.1007/s10584-013-0948-4 [CrossRef] [Google Scholar]
- P. Bhattacharyya, H. Pathak, S. Pal, P. Bhattacharyya, H. Pathak, and S. Pal, Impact of climate change on agriculture: Evidence and predictions 2020). https://doi.org/10.1007/978-981-15-9132-7 2 [Google Scholar]
- A. Sharma and V. Sahni, Climate Change and River Waters in South Asia: Scarcity, Security and the Avoidance of Zero-Sum Approaches in the Anthropocene Epoch (Routledge India, 2024). [Google Scholar]
- H. Blandinières and S. Amaducci, Adapting the cultivation of industrial hemp (Cannabis sativa L.) to marginal lands: A review. GCB Bioener. 14, 1004–1022 (2022). DOI: 10.1111/gcbb.12979 [CrossRef] [Google Scholar]
- K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 29, 42539–42559 (2022). https://doi. org/10.1007/s11356-022-19718-6 [CrossRef] [Google Scholar]
- P. R. Nair, B. M. Kumar, V. D. Nair, P. R. Nair, B. M. Kumar, and V. D. Nair, Soil Conservation and Control of Land-Degradation 2021). https://doi.org/10.1007/978-3-030-75358-0 18 [Google Scholar]
- M. Gavrilescu, Water, soil, and plants interactions in a threatened environment. Water. 13, 2746 (2021). https://doi.org/10.3390/w13192746 [CrossRef] [Google Scholar]
- G. A. Rajanna, A. Suman, and P. Venkatesh, Mitigating Drought Stress Effects in Arid and Semi-Arid Agro-Ecosystems through Bioirrigation Strategies—A Review. Sustain. 15, 3542 (2023). https://doi.org/10.3390/su15043542 [CrossRef] [Google Scholar]
- M. F. Seleiman, N. Al-Suhaibani, N. Ali, M. Akmal, M. Alotaibi, Y. Refay, T. Dindaroglu, H. H. Abdul-Wajid, and M. L. Battaglia, Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10, 259 (2021). https://doi.org/10.3390/plants10020259 [CrossRef] [Google Scholar]
- M. S. Iqbal, A. K. Singh, and M. I. Ansari, Effect of drought stress on crop production 2020). https://doi.org/10.1007/978-981-15-1322-0 3 [Google Scholar]
- D.-C. He, M.-H. He, D. M. Amalin, W. Liu, D. G. Alvindia, and J. Zhan, Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens. 10, 1311 (2021). https://doi.org/10.3390/pathogens10101311 [CrossRef] [Google Scholar]
- M. S. Ngalimat, E. MohdHata, D. Zulperi, S. I. Ismail, M. R. Ismail, N. A. I. Mohd Zainudin, N. B. Saidi, and M. T. Yusof, Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms. 9, 682 (2021). https://doi.org/10.3390/microorganisms9040682 [CrossRef] [Google Scholar]
- S. Ali and L. Xie, Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Pat. Food Nutr. Agric. 11, 96–104 (2020). https://doi.org/10.2174/2212798410666190515115548 [CrossRef] [Google Scholar]
- M. T. El-Saadony, A. M. Saad, S. M. Soliman, H. M. Salem, A. I. Ahmed, M. Mahmood, A. M. El-Tahan, A. A. Ebrahim, A. El-Mageed, and A. Taia, Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 13, 923880 (2022). https://doi.org/10.3389/fpls.2022.923880 [CrossRef] [Google Scholar]
- S. Castaldi, C. Petrillo, G. Donadio, F. D. Piaz, A. Cimmino, M. Masi, A. Evidente, and R. Isticato, Plant growth promotion function of Bacillus sp. strains isolated from salt-pan rhizosphere and their biocontrol potential against Macrophomina phaseolina. Int. J. Mol. Sci. 22, 3324 (2021). https://doi.org/10.3390/ijms22073324 [CrossRef] [Google Scholar]
- S. T. Zahra, M. Tariq, M. Abdullah, F. Azeem, and M. A. Ashraf, Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions. Peer J. 11, e14621 (2023). https://doi.org/10.7717/peerj.14621 [CrossRef] [Google Scholar]
- A. K. Saxena, M. Kumar, H. Chakdar, N. Anuroopa, and D. Bagyaraj, Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128, 1583–1594 (2020). https://doi.org/10.1111/jam.14506 [CrossRef] [PubMed] [Google Scholar]
- D. Miljaković, J. Marinković, and S. Balešević-Tubić, The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 8, 1037 (2020). https://doi.org/10.3390/microorganisms8071037 [CrossRef] [Google Scholar]
- Q. Saeed, W. Xiukang, F. U. Haider, J. Kučerik, M. Z. Mumtaz, J. Holatko, M. Naseem, A. Kintl, M. Ejaz, and M. Naveed, Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 22, 10529 (2021). https://doi.org/10.3390/ijms221910529 [CrossRef] [Google Scholar]
- L. Pasquina-Lemonche, J. Burns, R. Turner, S. Kumar, R. Tank, N. Mullin, J. Wilson, B. Chakrabarti, P. Bullough, and S. Foster, The architecture of the Gram-positive bacterial cell wall. Nature. 582, 294–297 (2020). https://doi.org/10.1038/s41586-020-2236-6 [CrossRef] [PubMed] [Google Scholar]
- S. DeBenedetti, J. F. Fisher, and S. Mobashery, Bacterial Cell Wall: Morphology and Biochemistry 2021). [Google Scholar]
- R. R. Manda, V. A. Addanki, A. Giabardo, J. Benjamin, M. J. Hossain, S. Khanna, M. Gaddam, R. Kumar, and S. Srivastava, Soil Health Management and Microorganisms: Recent Development (Springer, 2023). https://doi.org/10.1007/978-981-19-8307-8_18 [Google Scholar]
- A. R. Khan, A. Mustafa, S. Hyder, M. Valipour, Z. F. Rizvi, A. S. Gondal, Z. Yousuf, R. Iqbal, and U. Daraz, Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biolo. 11, 1763 (2022). https://doi.org/10.3390/biology11121763 [CrossRef] [Google Scholar]
- P. Prashar, N. Kapoor, and S. Sachdeva, Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Bio/Technol. 13, 63–77 (2014). [CrossRef] [Google Scholar]
- P. Rawat, S. Das, D. Shankhdhar, and S. Shankhdhar, Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant. 21, 49–68 (2021). https://doi.org/10.1007/s42729-020-00342-7 [Google Scholar]
- A. Anckaert, A. ArguellesArias, G. Hoff, M. Calonne-Salmon, S. Declerck, and M. Ongena, The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. 2021: Burleigh Dodds Science Publishing. [Google Scholar]
- G. Kishore and S. Pande, Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44, 98–105 (2007). https://doi.org/10.1111/j.1472-765X.2006.02022.x [CrossRef] [PubMed] [Google Scholar]
- M. D. C. Orozco-Mosqueda, A. Flores, B. Rojas-Sánchez, C. A. Urtis-Flores, L.R. Morales-Cedeño, M. F. Valencia-Marin, S. Chávez-Avila, D. Rojas-Solis, and G. Santoyo, Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agron. 11, 1167 (2021). https://doi.org/10.33 90/agronomy 11061167 [CrossRef] [Google Scholar]
- R. Raghuwanshi, Prospects of Cropping with Polysaccharides Producing Microbes Under Drought Stress. Resea. Agri. Sci. 55, 2–10 (2024). [Google Scholar]
- A. A. Rani, S. M. Basha, K. D. Darsha, C. A. Christy, H. P. Nagaiah, T. Kasthuri, and S. K. Pandian, Plant growth promoting Rhizobacteria and their biofilms in promoting sustainable agriculture and soil health (Elsevier, 2023). https://doi.org/10.1016/B978-0-323-99977-9.00003-X [Google Scholar]
- T. Tsotetsi, L. Nephali, M. Malebe, and F. Tugizimana, Bacillus for plant growth promotion and stress resilience: What have we learned? Plants. 11, 2482 (2022). https://doi.org/10.3390/plants11192482 [CrossRef] [Google Scholar]
- O. Lastochkina, D. Garshina, S. Ivanov, R. Yuldashev, R. Khafizova, C. Allagulova, K. Fedorova, A. Avalbaev, D. Maslennikova, and M. Bosacchi, Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants. 9, 1810 (2020). https://doi.org/10.3390/plants9121810 [CrossRef] [Google Scholar]
- H. Gowtham, B. Singh, M. Murali, N. Shilpa, M. Prasad, M. Aiyaz, K. Amruthesh, and S. Niranjana, Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol. Resea. 234, 126422 (2020). https://doi.org/10.1016/j.micres.2020.126422 [CrossRef] [Google Scholar]
- W. Janati, B. Benmrid, W. Elhaissoufi, Y. Zeroual, J. Nasielski, and A. Bargaz, Will phosphate bio-solubilization stimulate biological nitrogen fixation in grain legumes? Front. Agron. 3, 637196 (2021). https://doi.org/10.3389/fagro.2021.637196 [CrossRef] [Google Scholar]
- C. E. H. Maung, W. S. Baek, T. G. Choi, and K. Y. Kim, Control of grey mould disease on strawberry using the effective agent, Bacillus amyloliquefaciens Y1. Biocont. Sci. Techno. 31, 468–482 (2021). https://doi.org/10.1080/09583157.2020.1867707 [CrossRef] [Google Scholar]
- S. A. Bahaddad, M. H. Almalki, O. A. Alghamdi, S. S. Sohrab, M. Yasir, E. I. Azhar, and H. Chouayekh, Bacillus Species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob. Proteins. 15, 1–16 (2023). https://doi.org/10.1007/s12602-022-09909-5 [CrossRef] [PubMed] [Google Scholar]
- W. I. Saber, K. M. Ghoneem, A. A. Al-Askar, Y. M. Rashad, A. A. Ali, and E. M. Rashad, Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol. Hung. 66, 436–448 (2015). https://doi.org/10.1556/018.66.2015.4.8 [CrossRef] [PubMed] [Google Scholar]
- H. Etesami, B. R. Jeong, and B. R. Glick, Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 102048 (2023). https://doi.org/10.1016/j.pmpp.2023.102048 [CrossRef] [Google Scholar]
- M. Sood, D. Kapoor, V. Kumar, N. Kalia, R. Bhardwaj, G. P. Sidhu, and A. Sharma, Mechanisms of plant defense under pathogen stress: A review. Curr. Protein Pept. Sci. 22, 376–395 (2021). https://doi.org/10.2174/1389203722666210125122827 [CrossRef] [Google Scholar]
- T. Chakraborty and N. Akhtar, Biofertilizers: Characteristic features and applications 2021). https://doi.org/10.1002/9781119724995.ch15 [Google Scholar]
- I. Dimkić, T. Janakiev, M. Petrović, G. Degrassi, and D. Fira, Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review. Physiol. Mol. Plant Pathol. 117, 101754 (2022). https://doi.org/10.1016/j.pmpp.2021.101754 [CrossRef] [Google Scholar]
- P. Kumar, M. Kamle, R. Borah, D. K. Mahato, and B. Sharma, Bacillus thuringiensis as microbial biopesticide: uses and application for sustainable agriculture. Egypt. J. Biol. Pest Control. 31, 95 (2021). https://doi.org/10.1186/s41938-021-00440-3 [CrossRef] [Google Scholar]
- M. Wróbel, W. Sliwakowski, P. Kowalczyk, K. Kramkowski, and J. Dobrzyński, Bioremediation of Heavy Metals by the Genus Bacillus. Int. J. Environ. Res. Public Health. 20, 4964 (2023). https://doi.org/10.3390/iierph20064964 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.