Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01004
Number of page(s) 10
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901004
Published online 29 May 2024
  1. Arunkumar, K., Muthukannan, M., Dinesh Babu, A., Hariharan, A. L., & Muthuramalingam, T. (2020). Effect on addition of Polypropylene fibers in wood ash-fly ash based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 872(1). https://doi.org/10.1088/1757-899X/872/1/012162 [CrossRef] [Google Scholar]
  2. Arunkumar, K., Muthukannan, M., Suresh kumar, A., & Chithambar Ganesh, A. (2021). Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior. Environmental Research, 194(December 2020), 110661. https://doi.org/10.1016/j.envres.2020.110661 [CrossRef] [PubMed] [Google Scholar]
  3. Prithiviraj, C., Saravanan, J., Kumar, D. R., Murali, G., Vatin, N. I., & Swaminathan, P. (2022). Assessment of Strength and Durability Properties of Self-Compacting Concrete Comprising Alccofine. Sustainability (Switzerland), 14(10), 1–19. https://doi.org/10.3390/su14105895 [Google Scholar]
  4. Prithiviraj, C., Swaminathan, P., Kumar, D. R., Murali, G., & Vatin, N. I. (2022). Fresh and Hardened Properties of Self-Compacting Concrete Comprising a Copper Slag. Buildings, 12(7). https://doi.org/10.3390/buildings12070965 [CrossRef] [Google Scholar]
  5. Sankar, B., & Ramadoss, P. (2022). Experimental and Statistical Investigations on Alccofine Based Ternary Blended High-performance Concrete. International Journal of Engineering, Transactions B: Applications, 35(8), 1629–1640. https://doi.org/10.5829/IJE.2022.35.08B.19 [Google Scholar]
  6. Sankar, B., & Ramadoss, P. (2023). Modeling Modelling the compressive strength of high-performance concrete containing metakaolin using distinctive statistical techniques. Results in Control and Optimization, 12(May), 100241. https://doi.org/10.1016/j.rico.2023.100241 [CrossRef] [Google Scholar]
  7. S. Kaewunruen, L. Wu, K. Goto, Y.M. Najih, Vulnerability of structural concrete to extreme climate variances, Climate. 6 (2018) 1–13. https://doi.org/10.3390/cli6020040. [CrossRef] [Google Scholar]
  8. J. Davidovits, Chemistry of geopolymeric systems and terminology, in: 1999: pp. 9–39. [Google Scholar]
  9. J. Davidovits, GEOPOLYMERS: Man-Made Rock Geosynthesis and the Resulting Development of Very Early High Strength Cement, Mater. Eduucation. 16 (1994) 1–25. [Google Scholar]
  10. K. Mukilan, A. Chithambar Ganesh, A. Azik, Investigation of utilization of Flyash in Self Compacting Concrete, IOP Conf. Ser. Mater. Sci. Eng. 561 (2019). https://doi.org/10.1088/1757-899X/561/1/012056. [CrossRef] [Google Scholar]
  11. A.C. Ganesh, K. Mukilan, B.P.V. Srikar, L.V.S. Teja, K.S.V. Prasad, A.A. Kumar, R.P. Sharath, Effect of Flyash-Rice Husk Ash Blend in the Energy Efficient Geopolymer Tiles Using Industrial Wastes, Mater. Sci. Forum. 1048 MSF (2022) 403–411. https://doi.org/10.4028/www.scientific.net/MSF.1048.403. [CrossRef] [Google Scholar]
  12. A.C. Ganesh, M. Muthukannan, Effect of Elevated Temperature over Geopolymer Concrete, Int. J. Eng. Adv. Technol. 9 (2019) 450–453. https://doi.org/10.35940/ijeat.A1025.1291S419. [CrossRef] [Google Scholar]
  13. C. Ganesh, J. Sivasubramanaian, M.S. Seshamahalingam, J. Millar, V.J. Kumar, Investigation on the Performance of Hybrid Fiber Reinforced Geopolymer Concrete Made of M-Sand under Heat Curing, Mater. Sci. Forum. 1019 (2021) 73–81. https://doi.org/10.4028/www.scientific.net/MSF.1019.73. [CrossRef] [Google Scholar]
  14. A. Chithambar Ganesh, M. Vinod Kumar, R. Kanniga Devi, P. Srikar, S. Prasad, M. Manoj Kumar, R.P. Sarath, Pervious Geopolymer Concrete under Ambient Curing, Mater. Today Proc. 46 (2021) 2737–2741. https://doi.org/10.1016/j.matpr.2021.02.425. [Google Scholar]
  15. A.C. Ganesh, M. Muthukannan, Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength, J. Clean. Prod. 282 (2021) 124543 (12 pages)-124543 (12 pages). https://doi.org/10.1016/j.jclepro.2020.124543. [CrossRef] [Google Scholar]
  16. A. Mehta, R. Siddique, Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties, J. Clean. Prod. 205 (2018) 49–57. https://doi.org/10.1016/j.jclepro.2018.08.313. [CrossRef] [Google Scholar]
  17. A. Chithambar Ganesh, K. Rajesh Kumar, M. Vinod Kumar, Vyshnavi, R. Vandhiyan, N. Gurumoorthy, S. Sivakumar, Durability Studies on the Hybrid Fiber reinforced Geopolymer concrete made of M-sand under ambient curing, IOP Conf. Ser. Mater. Sci. Eng. 981 (2020). https://doi.org/10.1088/1757-899X/981/3/032074. [CrossRef] [Google Scholar]
  18. C. Ganesh, M. Muthukannan, A. Suresh Kumar, K. Arunkumar, Influence of Bacterial Strain Combination in Hybrid Fiber Reinforced Geopolymer Concrete subjected to Heavy and Very Heavy Traffic Condition, J. Adv. Concr. Technol. 19 (2021) 359–369. https://doi.org/10.3151/jact.19.359. [CrossRef] [Google Scholar]
  19. A. Chithambar Ganesh, M. Muthukannan, Experimental Study on the Behaviour of Hybrid Fiber Reinforced Geopolymer Concrete under Ambient Curing Condition, IOP Conf. Ser. Mater. Sci. Eng. 561 (2019). https://doi.org/10.1088/1757-899X/561/1/012014. [CrossRef] [Google Scholar]
  20. P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review, J. Clean. Prod. 270 (2020) 122389. https://doi.org/10.1016/j.jclepro.2020.122389. [CrossRef] [Google Scholar]
  21. A. Hassan, M. Arif, M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure, J. Clean. Prod. 223 (2019) 704–728. https://doi.org/10.1016/j.jclepro.2019.03.051. [CrossRef] [Google Scholar]
  22. T. Phoo-Ngernkham, V. Sata, S. Hanjitsuwan, C. Ridtirud, S. Hatanaka, P. Chindaprasirt, High calcium fly ash geopolymer mortar containing Portland cement for use as repair material, Constr. Build. Mater. 98 (2015) 482–488. https://doi.org/10.1016/j.conbuildmat.2015.08.139. [CrossRef] [Google Scholar]
  23. G.F. Huseien, M. Ismail, N.H.A. Khalid, M.W. Hussin, J. Mirza, Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity, Alexandria Eng. J. 57 (2018) 3375–3386. https://doi.org/10.1016/j.aej.2018.07.011. [Google Scholar]
  24. G.F. Huseien, A.R.M. Sam, J. Mirza, M.M. Tahir, M.A. Asaad, M. Ismail, K.W. Shah, Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation, Constr. Build. Mater. 187 (2018) 307–317. https://doi.org/10.1016/j.conbuildmat.2018.07.226. [CrossRef] [Google Scholar]
  25. E. Güneyisi, Fresh properties of self-compacting rubberized concrete incorporated with fly ash, Mater. Struct. Constr. 43 (2010) 1037–1048. https://doi.org/10.1617/s11527-009-9564-1. [CrossRef] [Google Scholar]
  26. H. Okamura, M. Ouchi, Sel-Compacting Concrete, J. Adv. Concr. Technol. 1 (2003) 5–15. [CrossRef] [Google Scholar]
  27. IS 383: 1970 Specification for Coarse and Fine Aggregates From Natural Sources for Concrete, Bur. Indian Stand. (1970) 1–24. [Google Scholar]
  28. IS 9103, Specification for Concrete Admixtures, Bur. Indian Stand. Delhi. (1999) 1–22. [Google Scholar]
  29. A.- C642–97, Standard test methods for Density, Absorption, and Voids in Hardened Concrete, ASTM Int. (2005) 1–3. [Google Scholar]
  30. R. Manjunath, M.C. Narasimhan, K.M. Umesh, Shivam Kumar, U.K. Bala Bharathi, Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes, Constr. Build. Mater. 198 (2019) 133–147. https://doi.org/10.1016/j.conbuildmat.2018.11.242. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.