Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01016
Number of page(s) 8
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901016
Published online 29 May 2024
  1. Arunkumar, K., Muthukannan, M., Kumar, A. S., Ganesh, A. C., & Devi, R. K. (2022). Hybrid fibre reinforced eco-friendly geopolymer concrete made with waste wood ash: A mechanical characterization study. Engineering and Applied Science Research, 49(2), 235–247. https://doi.org/10.14456/easr.2022.26 [Google Scholar]
  2. Arunkumar, K., Muthukannan, M., Suresh kumar, A., & Chithambar Ganesh, A. (2021). Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior. Environmental Research, 194(December 2020), 110661. https://doi.org/10.1016/j.envres.2020.110661 [CrossRef] [PubMed] [Google Scholar]
  3. Arunvivek, G. K., & Rameshkumar, D. (2019). Experimental Investigation on Performance of Waste Cement Sludge and Silica Fume-Incorporated Portland Cement Concrete. Journal of The Institution of Engineers (India): Series A, 100(4), 611–618. https://doi.org/10.1007/s40030-019-00399-3 [CrossRef] [Google Scholar]
  4. Prithiviraj, C., Swaminathan, P., Kumar, D. R., Murali, G., & Vatin, N. I. (2022). Fresh and Hardened Properties of Self-Compacting Concrete Comprising a Copper Slag. Buildings, 12(7). https://doi.org/10.3390/buildings12070965 [CrossRef] [Google Scholar]
  5. Sankar, B., & Ramadoss, P. (2022). Experimental and Statistical Investigations on Alccofine Based Ternary Blended High-performance Concrete. International Journal of Engineering, Transactions B: Applications, 35(8), 1629–1640. https://doi.org/10.5829/IJE.2022.35.08B.19 [Google Scholar]
  6. Sankar, B., & Ramadoss, P. (2023). Results in Control and Optimization Modelling the compressive strength of high-performance concrete containing metakaolin using distinctive statistical techniques. Results in Control and Optimization, 12(December 2022), 100241. [CrossRef] [Google Scholar]
  7. Senin, M. S., Shahidan, S., Leman, A. S., & Hannan, N. I. R. R. (2016, November). Properties of cement mortar containing rubber ash as sand replacement. In IOP conference series: materials science and engineering (Vol. 160, No. 1, p. 012055). IOP Publishing. [CrossRef] [Google Scholar]
  8. Nur, O. F., Albarqi, K., Melinda, A. P., & Al Jauhari, Z. (2021). The effect of waste tyre rubber on mechanical properties of normal concrete and fly ash concrete. GEOMATE Journal, 20(77), 55–61. [Google Scholar]
  9. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  10. Dhivya, K., & Priyadharshini, K. (2022). Experimental study on strength properties of concrete with partial replacement of coarse aggregate by rubber tyre waste. Materials Today: Proceedings, 52, 1930–1934. [CrossRef] [Google Scholar]
  11. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263. [CrossRef] [Google Scholar]
  12. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. [CrossRef] [Google Scholar]
  13. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  14. Bonicelli, A., Fuentes, L. G., & Bermejo, I. K. D. (2017, October). Laboratory investigation on the effects of natural fine aggregates and recycled waste tire rubber in pervious concrete to develop more sustainable pavement materials. In IOP Conference Series: Materials Science and Engineering (Vol. 245, No. 3, p. 032081). IOP Publishing. [CrossRef] [Google Scholar]
  15. Reddy, B. D., Jyothy, S. A., & Babu, P. R. (2013). Experimental investigation on concrete by partially replacement of ware aggregate with junk rubber. The International Journal Of Engineering And Science (IJES), 2(12), 61–65. [Google Scholar]
  16. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., … & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [Google Scholar]
  17. Raulkar, A., Khade, V., Gurnani, J. H., Anjankar, J. P., Wasnik, A., & Deo, M. (2020). Experimental Study on Behaviour of Concrete by Replacement of Aggregate and Sand with Rubber Tyre Chips and Foundry Sand. Int. J. Scient. Res. Sci. Technol. IJSRST, 7(3). [Google Scholar]
  18. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., … & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  19. Srikakulam, L. M. (2020). Experimental investigation on the strength parameters of rubberized engineered cementitious composite with M sand. Materials Today: Proceedings, 27, 1230–1234. [CrossRef] [Google Scholar]
  20. Kadhim, A. A., & Al-Mutairee, H. M. (2020). An experimental study on behavior of sustainable rubberized concrete mixes. Civil Engineering Journal, 6(7), 1273–1285. [CrossRef] [Google Scholar]
  21. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S., … & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  22. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D., … & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  23. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  24. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., … & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  25. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  26. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  27. Jokar, F., Khorram, M., Karimi, G., & Hataf, N. (2019). Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Construction and Building Materials, 208, 651–658. [CrossRef] [Google Scholar]
  28. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  29. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  30. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  31. Tian, L., Qiu, L., Li, J., & Yang, Y. (2020). Experimental study of waste tire rubber, wood-plastic particles and shale ceramsite on the performance of self-compacting concrete. Journal of Renewable Materials, 8(2), 153–170. [Google Scholar]
  32. Nikkhah, H., Tavakoli, H. R., & Fallah, N. (2023). Experimental investigation of the effects of using waste rubber ash on mechanical properties of plain concrete. International Journal of Engineering, 36(3), 450–456. [CrossRef] [Google Scholar]
  33. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A., … & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  34. Yasser, N., Abdelrahman, A., Kohail, M., & Moustafa, A. (2023). Experimental investigation of durability properties of rubberized concrete. Ain Shams Engineering Journal, 14(6), 102111. [CrossRef] [Google Scholar]
  35. Islam, M. M. U., Li, J., Wu, Y. F., Roychand, R., & Saberian, M. (2022). Design and strength optimization method for the production of structural lightweight concrete: An experimental investigation for the complete replacement of conventional coarse aggregates by waste rubber particles. Resources, Conservation and Recycling, 184, 106390. [CrossRef] [Google Scholar]
  36. Luong, N. D., Long, H. V., Tuan, N. K., & Thai, N. D. (2017). Properties of concrete containing rubber aggregate derived from discarded tires. Asian Review of Environmental and Earth Sciences, 4(1), 12–19. [CrossRef] [Google Scholar]
  37. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  38. Thomas, B. S., Gupta, R. C., & Panicker, V. J. (2015). Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustainable Cities and Society, 19, 68–73. [CrossRef] [Google Scholar]
  39. Hiremath, P. N., Jayakesh, K., Rai, R., Raghavendra, N. S., & Yaragal, S. C. (2019). Experimental investigation on utilization of waste shredded rubber tire as a replacement to fine aggregate in concrete. In Sustainable Construction and Building Materials: Select Proceedings of ICSCBM 2018 (pp. 561–569). Springer Singapore. [Google Scholar]
  40. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R., … & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  41. Siddiqui, M. M. A. (2016). Study of rubber aggregates in concrete an experimental investigation. International Journal of Latest Research in Engineering and Technology, 2(12), 36–57. [Google Scholar]
  42. SHAHIDAN, S., Mangi, S. A., SENIN, M. S., MOHD ZUKI, S. S., & WAN IBRAHIM, M. (2021). Characterization of tyre rubber ash and crumb as fine aggregate resource. Journal of Engineering Science and Technology, 16(1), 510–526. [Google Scholar]
  43. Sharma, R., & Mehta, S. (2018). Partial replacement of fine aggregate by waste tyre crumb rubber in concrete. International Journal of Civil Engineering and Technology (IJCIET) Volume, 9, 895–903. [Google Scholar]
  44. Mhaya, A. M., Baharom, S., Baghban, M. H., Nehdi, M. L., Faridmehr, I., Huseien, G. F., … & Ismail, M. (2022). Systematic experimental assessment of POFA concrete incorporating waste tire rubber aggregate. Polymers, 14(11), 2294. [CrossRef] [PubMed] [Google Scholar]
  45. Roychand, R., Gravina, R. J., Zhuge, Y., Ma, X., Mills, J. E., & Youssf, O. (2021). Practical rubber pre-treatment approch for concrete use—an experimental study. Journal of Composites Science, 5(6), 143. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.