Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01039
Number of page(s) 11
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901039
Published online 29 May 2024
  1. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A.,... & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  2. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  3. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R.,... & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  4. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S.,... & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  5. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  6. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  7. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D.,... & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  8. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304 [CrossRef] [Google Scholar]
  9. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263 [CrossRef] [Google Scholar]
  10. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830 [CrossRef] [Google Scholar]
  11. Allen, A. (2001). Containment landfills: the myth of sustainability. Engineering geology, 60(1–4), 3–19. [CrossRef] [Google Scholar]
  12. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  13. Grossi, L. B., Lange, L. C., & Amaral, M. C. (2024). Transition pathway towards more sustainable waste management practices for end-of-life reverse osmosis membranes: Challenges and opportunities in Brazil. Journal of Cleaner Production, 140571. [Google Scholar]
  14. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  15. Kumar, K., & Paul, B. (2024). Towards a sustainable geoliner construction in landfills by potential blending of fly ash with kaolin clay alternative: a review with an insight to Indian scenario. Waste Disposal & Sustainable Energy, 1–16. [Google Scholar]
  16. Mousavi, M., Kowsari, E., Gheibi, M., Cheshmeh, Z. A., Teymoorian, T., & Ramakrishna, S. (2024). Assessing Bioplastics’ Economic, Commercial, Political, and Energy Potential with Circular Economy Modeling: a Sustainable Solution to Plastic Waste Management. Materials Circular Economy, 6(1), 1–36. [CrossRef] [Google Scholar]
  17. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482 [CrossRef] [Google Scholar]
  18. Hackler, R. A., & Kennedy, R. M. (2024). Sustainable Petrochemical Alternatives From Plastic Upcycling. Technology Innovation for the Circular Economy: Recycling, Remanufacturing, Design, Systems Analysis and Logistics, 421–432. [Google Scholar]
  19. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z.,... & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 [Google Scholar]
  20. Cheshmehzangi, A., You, N., Siri, J., & Birch, E. (2024). Western Cape Industrial Symbiosis Programme (WISP) Delivered by GreenCape in the City of Cape Town, South Africa. In Harnessing Urban Innovation to Unlock the Sustainable Development Goals (pp. 133–138). Singapore: Springer Nature Singapore. [Google Scholar]
  21. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X.,... & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686 [CrossRef] [Google Scholar]
  22. Akbarimehr, D., Eslami, A., Nasiri, A., Rahai, M., & Karakouzian, M. (2024). Performance Study of Sustainable Concrete Containing Recycled Aggregates from Non-Selected Construction and Demolition Waste. Sustainability, 16(7), 2601 [CrossRef] [Google Scholar]
  23. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S.,... & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  24. Peantham, K., & Varabuntoonvit, V. (2024). Sustainable solutions in single-use food containers: A comprehensive life cycle assessment comparing plastic (PP) and its green alternative (PLA coated kraft paper, PLA). Environmental Engineering Research, 29(5). [Google Scholar]
  25. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  26. Oyebode, O. J. Promoting Integrated and Sustainable Solid Waste Management System in A Developing City for Public Health and Cleaner Environment. Journal of Harbin Engineering University, 45(01). [Google Scholar]
  27. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  28. Mishra, R., Chavda, P., Kumar, R., Pandit, R., Joshi, M., Kumar, M., & Joshi, C. (2024). Exploring genetic landscape of low-density polyethylene degradation for sustainable troubleshooting of plastic pollution at landfills. Science of The Total Environment, 912, 168882 [CrossRef] [Google Scholar]
  29. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  30. Kurniawan, T. A., Meidiana, C., Goh, H. H., Zhang, D., Othman, M. H. D., Aziz, F.,... & Ali, I. (2024). Unlocking synergies between waste management and climate change mitigation to accelerate decarbonization through circular-economy digitalization in Indonesia. Sustainable Production and Consumption, 46, 522–542. [CrossRef] [Google Scholar]
  31. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasion="1.0" ion="1.0" ations. Physica B: Condensed Matter, 646, 414327 [CrossRef] [Google Scholar]
  32. Yeh, N. H., & Yang, C. H. (2024). Exploring the Circular Solutions for Plastic Reduction: Case Studies of New Transition Journey. Journal of Service Science and Management, 17(2), 118–136. [CrossRef] [Google Scholar]
  33. Janga, J. K., & Reddy, K. R. (2024). Integrated resiliency and sustainability assessment of bioreactor landfills. Indian Geotechnical Journal, 1–19. [Google Scholar]
  34. Lansbury, N., & Sendall, M. C. (2024). Waste and Water. In Political Determinants of Health in Australia (pp. 148–166). Routledge. [Google Scholar]
  35. Graham-Nye, J., Florin, N., & Retamal, M. (2024). Windows of opportunity: The power dynamics in the disposable nappy regime and opportunities for niche innovations. Cleaner and Responsible Consumption, 12, 100169 [CrossRef] [Google Scholar]
  36. Rasmiya Begum, S. L., Himaya, S. M. M. S., Imthiyas, M. S. M., & Afreen, S. M. M. S. (2024). Fish Waste: Understanding the pollution potential and sustainable mitigation strategies. In Fish Waste to Valuable Products (pp. 427–440). Singapore: Springer Nature Singapore. [CrossRef] [Google Scholar]
  37. Khalife, E., Sabouri, M., Kaveh, M., & Szymanek, M. (2024). Recent Advances in the Application of Agricultural Waste in Construction. Applied Sciences, 14(6), 2355 [CrossRef] [Google Scholar]
  38. Al-Hazmi, H. E., Hassan, G. K., Kurniawan, T. A., Śniatała, B., Joseph, T. M., Majtacz, J.,... & Mąkinia, J. (2024). Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. Journal of Environmental Management, 354, 120414 [CrossRef] [PubMed] [Google Scholar]
  39. Sabrin, R., Shahjalal, M., Bachu, H. A. E., Habib, M. M. L., Jerin, T., & Billah, A. M. (2024). Recycling of different industrial wastes as supplement of cement for sustainable production of mortar. Journal of Building Engineering, 108765. [Google Scholar]
  40. Shukla, K. A., Sofian, A. D. A. B. A., Singh, A., Chen, W. H., Show, P. L., & Chan, Y. J. (2024). Food waste management and sustainable waste to energy: Current efforts, anaerobic digestion, incinerator and hydrothermal carbonization with a focus in Malaysia. Journal of Cleaner Production, 448, 141457 [CrossRef] [Google Scholar]
  41. Kara, H., Asensio-Villoria, L., & Georgoulias, A. (Eds.). (2024). Architecture and Waste: A (re) planned Obsolescence. Actar D, Inc.. [Google Scholar]
  42. Sharma, N., Bhardwaj, A., Joshi, S., Sahu, J. K., & Fatma, S. (2024). Modern Approaches in Food Packaging Waste Management. In Advances in Sustainable Food Packaging Technology (pp. 271–289). Apple Academic Press. [Google Scholar]
  43. Pashaki, S. G. A., Khojastehpour, M., Ebrahimi-Nik, M., & Tedesco, S. (2024). Potential of ash from agricultural waste as substitute of commercial FeCl3 in primary treatment of landfill leachate. Journal of Environmental Management, 351, 119932 [CrossRef] [PubMed] [Google Scholar]
  44. Hamda, A. S., Muleta, M. D., Jayakumar, M., Periyasamy, S., & Gurunathan, B. (2024). Valorization of Fruit Processing Industry Waste into Value-Added Chemicals. In Value Added Products From Food Waste (pp. 107–126). Cham: Springer Nature Switzerland. [Google Scholar]
  45. Johnson, N. (2024). Exploring Integrated Biogas Solutions for Industrial Processes: an Advanced Approach Towards Renewable Energy. [Google Scholar]
  46. Nesheim, I., Szulecka, J., Phoo, M. T., Nøklebye, E., & San, K. M. (2024). Complex waste management in Myanmar: Role of the actors, relationships, and social capital. Environment, Development and Sustainability, 1–22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.