Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 02003
Number of page(s) 13
Section Energy
DOI https://doi.org/10.1051/e3sconf/202452902003
Published online 29 May 2024
  1. Liang, J., Jing, T., Gomis-Bellmunt, O., Ekanayake, J. and Jenkins, N., Operation and control of multi terminal HVDC transmission for offshore wind farms. IEEE Trans. on Pow. Deli., 26(4), pp.2596–2604(2011). [Google Scholar]
  2. Paez, J.D., Frey, D., Maneiro, J., Bacha, S. and Dworakowski, P., 2018. Overview of DC–DC converters dedicated to HVDC grids. IEEE Trans. on Pow. Deli, 34(1), pp.119–128(2018). [Google Scholar]
  3. Zhu, J., Booth, C.D., Adam, G.P., Roscoe, A.J. and Bright, C.G. Inertia emulation control strategy for VSC-HVDC transmission systems. IEEE Trans on Pow Sys, 28(2), pp.1277–1287(2012). [Google Scholar]
  4. Beddard, A., Barnes, M. and Preece, R., 2014. Comparison of detailed modeling techniques for MMC employed on VSC-HVDC schemes. IEEE Trans. on Pow. Deli, 30(2), pp.579–589(2014). [Google Scholar]
  5. Guan, M. and Xu, Z., Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions. IEEE Trans. on Pow. Elect., 27(12), pp.4858–4867(2012). [Google Scholar]
  6. Flourentzou, N., Agelidis, V.G. and Demetriades, G.D. VSC-based HVDC power transmission systems: An overview. IEEE Trans. on Pow. Elect., 24(3), pp.592–602(2009). [Google Scholar]
  7. Nami, A., Liang, J., Dijkhuizen, F. and Demetriades, G.D., Modular multilevel converters for HVDC applications: Review on converter cells and functionalities. IEEE Trans. on Pow. Elect., 30(1), pp.18–36(2014). [Google Scholar]
  8. Hammons, T.J., Woodford, D., Loughtan, J., Chamia, M., Donahoe, J., Povh, D., Bisewski, B. and Long, W., Role of HVDC transmission in future energy development. IEEE Pow. Eng. Rev, 20(2), pp.10–25(2000). [Google Scholar]
  9. Oni, O.E., Davidson, I.E. and Mbangula, K.N., 2016, June. A review of LCC-HVDC and VSC-HVDC technologies and applications. IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC) pp. 1–7 (2016). [Google Scholar]
  10. Benda, V, Power semiconductors—state of art and future trends. In aiP conference Procedings, Vol. 1337, No. 1, pp. 16–24, American Institute of Physics (2011). [Google Scholar]
  11. Graham, J., Kumar, A. and Biledt, G., 2005, September. HVDC power transmission for remote hydroelectric plants. In CIGRE SC B4 Colloquium, pp. 23–24(2005). [Google Scholar]
  12. Vobecky, J., Botan, V., Stiegler, K., Meier, U. and Bellini, M., A novel ultra-low loss four inch thyristor for UHVDC. IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), pp. 413–416(2015) [Google Scholar]
  13. Petersson, A. and Edris, A., Dynamic performance of the Eagle Pass back-to-back HVDC Light tie (2001). [Google Scholar]
  14. Axelsson, U., Holm, A., Liljegren, C., Aberg, M., Eriksson, K. and Tollerz, O., The Gotland HVDC Light project-experiences from trial and commercial operation. 16th International Conference and Exhibition on Electriciy Distribution, 2001. Part 1: Contributions. CIRED Vol. 1, pp. 5. IET(2001). [Google Scholar]
  15. Steimer, P., Apeldoorn, O., Carroll, E. and Nagel, A., November. IGCT technology baseline and future opportunities. IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives Vol. 2, pp. 1182–1187, IEEE(2001). [Google Scholar]
  16. Johansson, S.G., Carlsson, L. and Russberg, G.,. Explore the power of HVDC light/spl reg/-a web based system interaction tutorial. IEEE PES Power System Conference and Exposition, pp. 839–842, IEEE(2004). [Google Scholar]
  17. Hagiwara, M. and Akagi, H., Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Trans on Pow. Elect., 24(7), pp.1737–1746(2009). [Google Scholar]
  18. Gunturi, S., Assal, J., Schneider, D. and Eicher, S., Innovative metal system for IGBT press pack modules. In ISPSD’03. IEEE 15th International Symposium on Power Semiconductor Devices and ICs, pp. 110–113, IEEE (2003). [Google Scholar]
  19. Bianchi, F.D., Domínguez-García, J.L. and Gomis-Bellmunt, O., Control of multi-terminal HVDC networks towards wind power integration: A review. Renewable and Sustainable Energy Reviews, 55, pp.1055–1068(2016). [Google Scholar]
  20. Li, Y., Tang, G., An, T., Pang, H., Wang, P., Yang, J., Wu, Y. and He, Z., Power compensation control for inter connection of weak power systems by VSC-HVDC. IEEE Trans. on Pow Del, 32(4), pp.1964–1974,(2016). [Google Scholar]
  21. Le Blond, S., Bertho Jr, R., Coury, D.V. and Vieira, J.C.M., Design of protection schemes for multi-terminal HVDC systems. Renewable and Sustainable Energy Reviews, 56, pp.965–974(2016). [Google Scholar]
  22. Saad, H., Peralta, J., Dennetiere, S., Mahseredjian, J., Jatskevich, J., Martinez, J.A., Davoudi, A., Saeedifard, M., Sood, V., Wang, X. and Cano, J., Dynamic averaged and simplified models for MMC-based HVDC transmission systems. IEEE Trans. on Pow. Del, 28(3), pp.1723–1730(2013). [Google Scholar]
  23. Hannan, M.A., Hussin, I., Ker, P.J., Hoque, M.M., Lipu, M.H., Hussain, A., Rahman, M.A., Faizal, C.W.M. and Blaabjerg, F., Advanced control strategies of VSC based HVDC transmission system: Issues and potential recommendations. IEEE Access, 6, pp.78352–78369(2018). [Google Scholar]
  24. Manohar, G. and Deepthi, M.,Back-to-Back Voltage-Source Converters with PSO-based PI Tuning Controller for Grid-Connected Wind-Solar Cogeneration. International Conference on Smart and Sustainable Technologies in Eneergy and Power Sectors (SSTEPS), pp. 33–38. IEEE (2022). [Google Scholar]
  25. Gangikunta, M., Venkateshwarlu, S. and Laxmi, A.J., Comparative Analysis of Low Voltage Ride Through Techniques of DFIG Connected to Grid using AI Techniques. E3S Web of Conferences, Vol. 472, p. 01002). EDP Sciences,(2024). [Google Scholar]
  26. Luo, S., Dong, X., Shi, S. and Wang, B., A directional protection scheme for HVDC transmission lines based on reactive energy. IEEE Trans. on Pow. Del. 31(2), pp.559–567(2015). [Google Scholar]
  27. Xue, Y. and Zhang, X.P., Reactive power and AC voltage control of LCC HVDC system with controllable capacitors. IEEE Trans. on Pow. Sys, 32(1), pp.753–764(2016). [Google Scholar]
  28. Renedo, J., Garcia-Cerrada, A. and Rouco, L., Reactive-power coordination in VSC-HVDC multi-terminal systems for transient stability improvement. IEEE Trans. on Pow. Sys, 32(5), pp.3758–3767,(2016). [Google Scholar]
  29. Janardhan, G., Srinivas, G.N. and Babu, N.S., Realization of constant common mode voltage in transformerless photo voltaic inverter topologies. International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), pp. 1–5. IEEE (2018). [Google Scholar]
  30. Jafar, M. and Molinas, M.,. A transformerless series reactive/harmonic compensator for line-commutated HVDC for grid integration of offshore wind power. IEEE Trans. on Ind. Elect. 60(6), pp.2410–2419(2012). [Google Scholar]
  31. Pradhan, J.K., Ghosh, A. and Bhende, C.N., Small-signal modeling and multivariable PI control design of VSC-HVDC transmission link. Elec. Pow. Sys. Res., 144, pp.115–126(2017). [Google Scholar]
  32. Khazaei, J., Beza, M. and Bongiorno, M., Impedance analysis of modular multi-level converters connected to weak AC grids. IEEE Trans. on Pow. Sys., 33(4), pp.4015–4025(2017). [Google Scholar]
  33. Pathak, A.K., Sharma, M.P. and Bundele, M., 2015. A critical review of voltage and reactive power management of wind farms. Ren. and Sus. Ene. Rev., 51, pp.460–471(2015). [CrossRef] [Google Scholar]
  34. Guo, C., Liu, W., Zhao, C. and Iravani, R., A frequency-based synchronization approach for the VSC-HVDC station connected to a weak AC grid. IEEE Trans. on Pow. Del., 32(3), pp.1460–1470(2016). [Google Scholar]
  35. Egea-Alvarez, A., Fekriasl, S., Hassan, F. and Gomis-Bellmunt, O., Advanced vector control for voltage source converters connected to weak grids. IEEE Trans. on Pow. Sys., 30(6), pp.3072–3081(2015). [Google Scholar]
  36. Hannan, M.A., Islam, N.N., Mohamed, A., Lipu, M.S.H., Ker, P.J., Rashid, M.M. and Shareef, H., Artificial intelligent based damping controller optimization for the multi-machine power system: A review. IEEE Access, 6, pp.39574–39594(2018). [Google Scholar]
  37. Abdelwahed, M.A. and El-Saadany, E.F., Power sharing control strategy of multiterminal VSC-HVDC transmission systems utilizing adaptive voltage droop. IEEE Trans. on Sus. Ene, 8(2), pp.605–615(2016). [Google Scholar]
  38. Sakamuri, J.N., Rather, Z.H., Rimez, J., Altin, M., Göksu, Ö. and Cutululis, N.A., Coordinated voltage control in offshore HVDC connected cluster of wind power plants. IEEE Trans. on Sus. Ene., 7(4), pp.1592–1601(2016). [Google Scholar]
  39. Liang, H., Dong, Y. and Cao, D., Research on VSC-HVDC double closed loop controller based on variable universe fuzzy PID control. China Internatioanl Electrical and Energy Conference (CIEEC) pp. 633–638, IEEE(2017). [Google Scholar]
  40. Moharana, A., Samarabandu, J. and Varma, R.K., 2011, October. Fuzzy supervised PI controller for VSC HVDC system connected to Induction Generator based wind farm. IEEE Electrical Power and Energy Conference, pp. 432–437, IEEE(2011). [Google Scholar]
  41. Liang, H., Li, G., Zhou, M. and Zhao, C., The implementation of fuzzy adaptive PI controller in VSC-HVDC systems. IEEE/PES Power Systems Conference and Exposition, pp. 1–5. IEEE(2009). [Google Scholar]
  42. Hannan, M.A., Abd Ali, J., Ker, P.J., Mohamed, A., Lipu, M.S. and Hussain, A., Switching techniques and intelligent controllers for induction motor drive: Issues and recommendations. IEEE access, 6, pp.47489–47510(2018). [Google Scholar]
  43. Ni, X., Gole, A.M., Zhao, C. and Guo, C., An improved measure of AC system strength for performance analysis of multi-infeed HVDC systems including VSC and LCC converters. IEEE Trans. on Pow. Del., 33(1), pp.169–178(2017). [Google Scholar]
  44. Zhang, L., Harnefors, L. and Nee, H.P., Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control. IEEE Trans. on Pow. Sys., 26(1), pp.344–355(2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.