Open Access

This article has an erratum: [https://doi.org/10.1051/e3sconf/202452902019]


Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 02013
Number of page(s) 9
Section Energy
DOI https://doi.org/10.1051/e3sconf/202452902013
Published online 29 May 2024
  1. Ozturk, Munir, Naheed Saba, Volkan Altay, Rizwan Iqbal, Khalid Rehman Hakeem, Mohammad Jawaid, and Faridah Hanum Ibrahim. “Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia.” Renewable and Sustainable Energy Reviews 79 (2017): 1285–1302. [Google Scholar]
  2. Kumar, S. Senthil, T. S. Senthilkumar, P. Pitchipoo, Yagya Dutta Dwivedi, N. Nagaprasad, Kuldeep K. Saxena, S. Rathinavel, Sayed M. Eldin, and Krishnaraj Ramaswamy. “Grey relational analysis and surface texture analysis of Al-based metal matrix composites.” journal of materials research and technology 24 (2023): 5372–5388. [Google Scholar]
  3. Guo, Mingxin, Weiping Song, and Jeremy Buhain. “Bioenergy and biofuels: History, status, and perspective.” Renewable and sustainable energy reviews 42 (2015): 712–725. [CrossRef] [Google Scholar]
  4. Salah, Wael A., Mai Abuhelwa, and Mohammed J. Bashir. “Overview on the current practices and future potential of bioenergy use in Palestine.” Biofuels, Bioproducts and Biorefining 15, 4 (2021): 1095–1109. [Google Scholar]
  5. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A.,... & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  6. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  7. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R.,... & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  8. Sakthivel, R., Hari, S. D. S., Dutt, R., Sujay, S., Shree, R. M., & Alamelu, R. M. (2024). Introduction to waste to bioenergy. In Waste Valorization for Bioenergy and Bioproducts (pp. 1–21). Woodhead Publishing. [Google Scholar]
  9. Qureshi, T., Farooq, M., Imran, S., Munir, M. A., Javed, M. A., Sohoo, I.,... & Andresen, J. M. (2024). Structural and thermal investigation of lignocellulosic biomass conversion for enhancing sustainable imperative in progressive organic refinery paradigm for waste-to-energy applications. Environmental Research, 246, 118129 [CrossRef] [PubMed] [Google Scholar]
  10. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S.,... & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  11. Gani, A., Erdiwansyah, E., Munawar, E., Faisal, M., Mahidin, M., Zaki, M., & Nizar, M. (2024, March). Overview of torrefaction technology for promotion palm oil solid waste to energy biochar. In AIP Conference Proceedings (Vol. 3073, No. 1). AIP Publishing. [Google Scholar]
  12. Ahmed, A. M. F. (2024). Modelling and optimization of waste-to-energy developments for Net Zero Energy Buildings (NZEBs) (Doctoral dissertation, University of Glasgow). [Google Scholar]
  13. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  14. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263 [CrossRef] [Google Scholar]
  15. Karthikeyan, P. K., Bandulasena, H. C. H., & Radu, T. (2024). A comparative analysis of pre-treatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Industrial Crops and Products, 215, 118591 [CrossRef] [Google Scholar]
  16. Taqvi, S. A. A., Kazmi, B., Naqvi, S. R., Juchelková, D., & Bokhari, A. State-of-the-Art Review of Biomass Gasification: Raw to Energy Generation. ChemBioEng Reviews. [Google Scholar]
  17. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  18. AlNouss, A., Alherbawi, M., Parthasarathy, P., Al-Thani, N., McKay, G., & Al-Ansari, T. (2024). Waste-to-energy technology selection: A multi-criteria optimisation approach. Computers & Chemical Engineering, 183, 108595 [CrossRef] [Google Scholar]
  19. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  20. Jayakishan, B., Rajkumar, S., & Nagarajan, G. (2024). Experimental investigation and optimization of dual fuel combustion using diesel/gasoline and Bio-oil extracted from Co-thermal liquefaction of paint/biomass wastes: An approach towards waste to energy. Journal of Cleaner Production, 141396. [Google Scholar]
  21. A. Gabbar, H., & Ahmad, M. S. (2024). Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste. Energies, 17(2), 497 [CrossRef] [Google Scholar]
  22. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  23. Kokkinos, N. C., Emmanouilidou, E., & Sharma, S. K. (2024). Waste-To-Biofuel Production for the Transportation Sector. In Intelligent Transportation System and Advanced Technology (pp. 99–122). Singapore: Springer Nature Singapore. [CrossRef] [Google Scholar]
  24. Ertuğrul, Ö., Daher, B., Özgünaltay Ertuğrul, G., & Mohtar, R. (2024). From Agricultural Waste to Energy: Assessing the Bioenergy Potential of South-Central Texas. Energies, 17(4), 802 [CrossRef] [Google Scholar]
  25. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482 [CrossRef] [Google Scholar]
  26. Amesho, K. T., Edoun, E. I., Kadhila, T., Shangdiar, S., Iikela, S., Pandey, A.,... & Lani, M. N. (2024). Technologies to convert waste to bio-oil, biochar, and biogas. In Waste Valorization for Bioenergy and Bioproducts (pp. 63–90). Woodhead Publishing. [CrossRef] [Google Scholar]
  27. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z.,... & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 [Google Scholar]
  28. Singh, K., Kumar, N., Bharti, A., Thakur, P., & Kumar, V. (2024). Waste to Energy Conversion: Key Elements for Sustainable Waste Management. In Integrated Waste Management: A Sustainable Approach from Waste to Wealth (pp. 91–117). Singapore: Springer Nature Singapore. [CrossRef] [Google Scholar]
  29. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X.,... & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686 [CrossRef] [Google Scholar]
  30. Mediboyina, M. K., & Murphy, F. (2024). Environmental Assessment of a Waste-to-Energy Cascading System Integrating Forestry Residue Pyrolysis and Poultry Litter Anaerobic Digestion. Energies, 17(7), 1511 [CrossRef] [Google Scholar]
  31. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S.,... & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  32. Cui, W., Wei, Y., & Ji, N. (2024). Global trends of waste-to-energy (WtE) technologies in carbon neutral perspective: Bibliometric analysis. Ecotoxicology and Environmental Safety, 270, 115913 [CrossRef] [PubMed] [Google Scholar]
  33. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  34. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830 [CrossRef] [Google Scholar]
  35. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  36. Ghosh, S. K., Parlikar, U. V., Zorpas, A. A., & Papamichael, I. (2024). Sustainable supply chain for waste-to-energy facilities. In Advances in Biofuels Production, Optimization and Applications (pp. 297–313). Elsevier. [CrossRef] [Google Scholar]
  37. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  38. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327 [CrossRef] [Google Scholar]
  39. Fardi, Z., Shahbeik, H., Nosrati, M., Motamedian, E., Tabatabaei, M., & Aghbashlo, M. (2024). Waste-to-energy: Co-pyrolysis of potato peel and macroalgae for biofuels and biochemicals. Environmental Research, 242, 117614 [CrossRef] [PubMed] [Google Scholar]
  40. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D.,... & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  41. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304 [CrossRef] [Google Scholar]
  42. Papamichael, I., Voukkali, I., Stylianou, M., Zorpas, A. A., Baidya, R., & Ghosh, S. K. (2024). Concept of waste-to-energy strategies. In Advances in Biofuels Production, Optimization and Applications (pp. 241–267). Elsevier. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.