Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 03007
Number of page(s) 11
Section Environmental Impacts
DOI https://doi.org/10.1051/e3sconf/202452903007
Published online 29 May 2024
  1. Addisie, M. B. (2022). ” Evaluating drinking water quality using water quality parameters and esthetic attributes. ” Air, Soil and Water Research, 15, 11786221221075005, pp. 1–8. [Google Scholar]
  2. Brix, K. V., Tear, L., DeForest, D. K., Adams, W. J. (2023). ” Development of multiple linear regression models for predicting chronic iron toxicity to aquatic organisms. ” Environmental Toxicology and Chemistry, pp. 1371–1385. [Google Scholar]
  3. Brown, R. M., McClelland, N. I., Deininger, R. A., Tozer, R. G. (1970). ” A water quality index-do we dare. ” Water and sewage work, pp. 117, 110. [Google Scholar]
  4. Damo, R., Icka, P. (2013). ” Evaluation of Water Quality Index for Drinking Water. ” Polish Journal of Environmental Studies, 22(4), pp. 1045–1051. [Google Scholar]
  5. Dohare, D., Deshpande, S., Kotiya, A. (2014). ” Analysis of ground water quality parameters: A Review. ” Research Journal of Engineering Sciences ISSN, 2278, 9472, 3(5), pp 26–31. [Google Scholar]
  6. Ewaid, S. H., Abed, S. A., Kadhum, S. A. (2018). ” Predicting the Tigris River water quality within Baghdad, Iraq by using water quality index and regression analysis. ” Environmental Technology Innovation, 11, pp. 390–398. [Google Scholar]
  7. Gaya, M. S., Abba, S. I., Abdu, A. M., Tukur, A. I., Saleh, M. A., Esmaili, P., Wahab, N. A. (2020). ” Estimation of water quality index using artificial intelligence approaches and multi-linear regression. ” Int. J. Artif. Intell. ISSN, 2252, 8938, 9(1), pp. 126–134. [Google Scholar]
  8. Gorde, S. P., Jadhav, M. V. (2013). ” Assessment of water quality parameters: a review. ” JEng Res Appl, 3(6), 2029–2035. pp. 31 [Google Scholar]
  9. Heydari, M. M., Abbasi, A., Rohani, S. M., Hosseini, S. M. A. (2013). ” Correlation study and regression analysis of drinking water quality in Kashan City, Iran. ” Walailak Journal of Science and Technology (WJST), 10(3), pp. 315–324. [Google Scholar]
  10. Joarder, M. A. M., Raihan, F., Alam, J. B., Hasanuzzaman, S. (2008). ” Regression analysis of ground water quality data of Sunamganj District, Bangladesh. ”, pp. 291–296. [Google Scholar]
  11. Kadam, A. K., Wagh, V. M., Muley, A. A., Umrikar, B. N., Sankhua, R. N. (2019). ” Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. ” Modeling Earth Systems and Environment, 5, pp. 951–962. [Google Scholar]
  12. Kumar, N., Sinha, D. K. (2010). ” Drinking water quality management through correlation studies among various physico-chemical parameters: A case study.” International journal of environmental sciences, 1(2), pp. 253–259. [Google Scholar]
  13. Ouma, Y. O., Okuku, C. O., Njau, E. N. (2020). ” Use of artificial neural networks and multiple linear regression model for the prediction of dissolved oxygen in rivers: Case study of hydrographic basin of River Nyando, Kenya. ” Complexity, 2020, pp. 1–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.