Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 03012
Number of page(s) 12
Section Environmental Impacts
DOI https://doi.org/10.1051/e3sconf/202452903012
Published online 29 May 2024
  1. Ujjwal, Jivesh, and Ranja Bandyopadhyaya. “Development of Pedestrian Level of Service (PLOS) model and satisfaction perception rating models for pedestrian infrastructure for mixed land-use urban areas.” Transportation 50, 2 (2023): 355–381. [Google Scholar]
  2. Li, Y., Yabuki, N., & Fukuda, T. (2023). Integrating GIS, deep learning, and environmental sensors for multicriteria evaluation of urban street walkability. Landscape and Urban Planning, 230, 104603 [CrossRef] [Google Scholar]
  3. Gore, N., Arkatkar, S., Joshi, G., & Antoniou, C. (2023). Developing modified congestion index and congestion-based level of service. Transport policy, 131, 97–119. [CrossRef] [Google Scholar]
  4. Marwah, B. R., & Singh, B. (2000, June). Level of service classification for urban heterogeneous traffic: A case study of Kanpur metropolis. In fourth international symposium on Highway Capacity, Hawaii. [Google Scholar]
  5. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A.,... & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  6. Salam, F. M. (2022). Evaluation of Capacity and Level of Service for Heterogeneous Traffic of Urban Multi-Lane Highways. CONSTRUCTION, 2(2), 31–38. [CrossRef] [Google Scholar]
  7. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  8. Beura, S. K., & Bhuyan, P. K. (2017). Development of a bicycle level of service model for urban street segments in mid-sized cities carrying heterogeneous traffic: A functional networks approach. Journal of traffic and transportation engineering (English edition), 4(6), 503–521. [CrossRef] [Google Scholar]
  9. Maitra, B., Sikdar, P. K., & Dhingra, S. L. (1999). Modeling congestion on urban roads and assessing level of service. Journal of transportation engineering, 125(6), 508–514. [CrossRef] [Google Scholar]
  10. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  11. Rao, B. S., Rambabu, T., & Rao, G. V. (2017). Analysis of capacity and level of service at uncontrolled intersections under heterogeneous traffic conditions. International Journal of Civil Engineering and Technology (IJCIET), 8, 181–190. [Google Scholar]
  12. Mishra, R., Kumar, P., Arkatkar, S. S., Sarkar, A. K., & Joshi, G. J. (2017). Novel area occupancy–based method for passenger car unit estimation on multilane urban roads under heterogeneous traffic scenario. Transportation Research Record, 2615(1), 82–94. [CrossRef] [Google Scholar]
  13. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482 [CrossRef] [Google Scholar]
  14. Gupta, M. K., Panday, V., & Sharma, R. (2023). A Review on Level of Service for Heterogeneous Traffic in Urban Areas. Industry 5.0 and Paradigm Shift—Emerging Challenges, 25. [Google Scholar]
  15. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z.,... & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 [Google Scholar]
  16. Jayaratne, D. N. D., Pasindu, H. R., & Rathnayaka, L. M. K. (2024). Development of Capacity Estimation Models for Multi-lane Roads under Heterogeneous Traffic Conditions. ENGINEER, 57(01), 71–83. [CrossRef] [Google Scholar]
  17. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X.,... & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686 [CrossRef] [Google Scholar]
  18. Ramezani, M., Haddad, J., & Geroliminis, N. (2015). Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control. Transportation Research Part B: Methodological, 74, 1–19. [CrossRef] [Google Scholar]
  19. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S.,... & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  20. Kumar, P., Arkatkar, S., & Joshi, G. (2018). New approach for estimating passenger car units on multilane urban roads with heterogeneous traffic conditions. Journal of Transportation Engineering, Part A: Systems, 144(3), 04018002 [CrossRef] [Google Scholar]
  21. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  22. Pandey, A., & Biswas, S. (2021). Development of ‘speed ratio’based level of service criteria on undivided urban streets in mixed traffic context. Canadian Journal of Civil Engineering, 48(9), 1169–1180. [CrossRef] [Google Scholar]
  23. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  24. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  25. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327 [CrossRef] [Google Scholar]
  26. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  27. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R.,... & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  28. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S.,... & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  29. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  30. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  31. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D.,... & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  32. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304 [CrossRef] [Google Scholar]
  33. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263 [CrossRef] [Google Scholar]
  34. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.