Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 03017
Number of page(s) 11
Section Environmental Impacts
DOI https://doi.org/10.1051/e3sconf/202452903017
Published online 29 May 2024
  1. Rouhanizadeh, Behzad, Sharareh Kermanshachi, and Thahomina Jahan Nipa. “Exploratory analysis of barriers to effective post-disaster recovery.” International Journal of Disaster Risk Reduction 50 (2020): 101735. [Google Scholar]
  2. Qin, Mingyuan, Bee Teng Chew, Yat Huang Yau, Zhen Yang, Xiaofei Han, Li Chang, Yiqiao Liu, and Song Pan. “Characteristic analysis and improvement methods of the indoor thermal environment in post-disaster temporary residential buildings: A systematic review.” Building and Environment (2023): 110198. [Google Scholar]
  3. Tahesh, Ghina, Harith Abdulsattar, Maya Abou Zeid, and Chen Chen. “Risk perception and travel behavior under short-lead evacuation: Post disaster analysis of 2020 Beirut Port Explosion.” International journal of disaster risk reduction 89 (2023): 103603. [Google Scholar]
  4. Vinod, Angela Maria, Dharathi Venkatesh, Dishti Kundra, and N. Jayapandian. “Natural disaster prediction by using image based deep learning and machine learning.” In Second International Conference on Image Processing and Capsule Networks: ICIPCN 2021 2, pp. 56–66. Springer International Publishing, 2022. [Google Scholar]
  5. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  6. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A.,... & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  7. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  8. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R.,... & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  9. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S.,... & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  10. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  11. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  12. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D.,... & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  13. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304 [CrossRef] [Google Scholar]
  14. Ro, S. H., Li, Y., & Gong, J. (2024). A Machine learning approach for Post-Disaster data curation. Advanced Engineering Informatics, 60, 102427 [Google Scholar]
  15. Gu, J., Xie, Z., Zhang, J., & He, X. (2024). Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey. Buildings, 14(4), 898 [CrossRef] [Google Scholar]
  16. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263 [CrossRef] [Google Scholar]
  17. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830 [CrossRef] [Google Scholar]
  18. Abraham, K., Abdelwahab, M. & Abo-Zahhad, M. Classification and detection of natural disasters using machine learning and deep learning techniques: A review. Earth Sci Inform 17, 869–891 (2024). [Google Scholar]
  19. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482 [CrossRef] [Google Scholar]
  20. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z.,... & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 [Google Scholar]
  21. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X.,... & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686 [CrossRef] [Google Scholar]
  22. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S.,... & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  23. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  24. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  25. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  26. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327 [CrossRef] [Google Scholar]
  27. Hacıefendioğlu, K., Başağa, H. B., Kahya, V., Özgan, K., & Altunışık, A. C. (2024). Automatic Detection of Collapsed Buildings after the 6 February 2023 Türkiye Earthquakes Using Post-Disaster Satellite Images with Deep Learning-Based Semantic Segmentation Models. Buildings, 14(3), 582 [Google Scholar]
  28. Zhao, D., Lu, J., & Yuan, B. (2024). See, Perceive and Answer: A Unified Benchmark for High-resolution Post-disaster Evaluation in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing. [Google Scholar]
  29. Yazdani, M., Kabirifar, K., & Haghani, M. (2024). Optimising post-disaster waste collection by a deep learning-enhanced differential evolution approach. Engineering Applications of Artificial Intelligence, 132, 107932 [CrossRef] [Google Scholar]
  30. Chen, M., Wu, J., Mao, T., Du, R., Zhao, B., Lin, J., & Zhang, J. (2024). An improved method for rapid un-collapsed building extraction from post-disaster high-resolution remote sensing imagery based on multi-scale feature alignment. International Journal of Digital Earth, 17(1), 2344599 [CrossRef] [Google Scholar]
  31. Sinha, R. K., Kushwaha, M., Choudhary, J., Singh, D. P., & Pandey, M. (2024, February). Flood Image Segmentation of UAV Aerial Images using Deep Learning. In 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1–6). IEEE. [Google Scholar]
  32. Alremeithi, M., Altamimi, H., Alshehhi, A., & Khattak, A. (2024, February). A Comparative Review and Recommendations on Database Recovery Techniques. In 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA) (pp. 1–6). IEEE. [Google Scholar]
  33. Bekkaye, J. H., & Jafari, N. H. (2024). Application and comparison of remote sensing techniques for data-driven disaster debris quantification. International Journal of Remote Sensing, 45(8), 2808–2831. [CrossRef] [Google Scholar]
  34. Wu, L., Tong, J., Wang, Z., Li, J., Li, M., Li, H., & Feng, Y. (2024). Post-flood disaster damaged houses classification based on dual-view image fusion and Concentration-Based Attention Module. Sustainable Cities and Society, 103, 105234 [CrossRef] [Google Scholar]
  35. Liu, Y., Lin, Y., Liu, W., Zhou, J., & Wang, J. (2024). Remote sensing perspective in exploring the spatiotemporal variation characteristics and post-disaster recovery of ecological environment quality, a case study of the 2010 Ms7. 1 Yushu earthquake. Geomatics, Natural Hazards and Risk, 15(1), 2314578 [CrossRef] [Google Scholar]
  36. Ren, S., Pan, Y., Zhao, C., Gao, Y., & Ma, G. An Efficient Artificial Surface Anomaly Index (Asai) Based on Post-Disaster Texture Features Using Single-Temporal and High-Resolution Imagery. Available at SSRN 4777417. [Google Scholar]
  37. Shakibaei, H., Moosavi, S. A., Aghsami, A., & Rabbani, M. (2024). Designing a sustainable-resilient humanitarian supply chain for post-disaster relief process, an earthquake case study in Haiti. Journal of Humanitarian Logistics and Supply Chain Management. [Google Scholar]
  38. Kopiika, N., Karavias, A., Krassakis, P., Ye, Z., Ninic, J., Shakhovska, N.,... & Mitoulis, S. (2024). Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies--a tiered approach. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.