Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 04017
Number of page(s) 12
Section Advanced Interdisciplinary Approaches
DOI https://doi.org/10.1051/e3sconf/202452904017
Published online 29 May 2024
  1. Sudheer Mangalampalli, Ganesh Reddy Karri, Mohit Kumar, Osama Ibrahim Khalaf, Carlos Andres Tavera Romero, Ghaida Muttashar Abdul Sahib, “DRLBTSA: Deep reinforcement learning based task-scheduling algorithm in cloud computing”, Multimedia Tools and Applications, Springer, 2023, Pages 1–30, https://doi.org/10.1007/s11042–023-16008–2 [Google Scholar]
  2. Pallab Banerjee, Sharmistha Roy, Anurag Sinha, Md. Mehedi Hassan, Shrikant Burje, Anupam Agrawal, Anupam Kumar Bairagi, Samah Alshathri, And Walid El-Shafai, “MTD-DHJS: Makespan-Optimized Task Scheduling Algorithm for Cloud Computing With Dynamic Computational Time Prediction”, IEEE Access, Volume 11, 2023, Pages 105578 – 105618. DOI: 10.1109/ACCESS.2023.3318553 [Google Scholar]
  3. Hadeer Mahmoud, Mostafa Thabet, Mohamed H. Khafagy, and Fatma A. Omara, “Multiobjective Task Scheduling in Cloud Environment Using Decision Tree Algorithm”, IEEE Access, Volume 10, 2022, Pages 36140 – 36151. DOI: 10.1109/ACCESS.2022.3163273 [Google Scholar]
  4. Toutou Oudaa, Hamza Gharsellaoui, Samir Ben Ahmed, “An Agent-based Model for Resource Provisioning and Task Scheduling in Cloud Computing Using DRL”, Procedia Computer Science, Elsevier, Volume 192, 2021, Pages 3795–3804. https://doi.org/10.1016/j.procs.2021.09.154 [Google Scholar]
  5. Soukaina Ouhame, Youssef Hadi & Arif Ullah, “An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model”, Neural Computing and Applications, Springer, Volume 3, 2021, Pages 10043–10055. https://doi.org/10.1007/s00521–021-05770–9 [Google Scholar]
  6. Mohan Sharma, Ritu Garg, “An artificial neural network based approach for energy efficient task scheduling in cloud data centers”, Sustainable Computing: Informatics and Systems, Elsevier, Volume 26, June 2020, Pages 1–26. https://doi.org/10.1016/j.suscom.2020.100373 [Google Scholar]
  7. J. K. Jeevitha and G. Athisha, “A novel scheduling approach to improve the energy efciency in cloud computing data centers”, Journal of Ambient Intelligence and Humanized Computing, Springer, Volume 12, 2021, Pages 6639–6649. https://doi.org/10.1007/s12652–020-02283–6 [Google Scholar]
  8. Avinab Marahattaa, Sandeep Pirbhulal, Fa Zhang, Reza M. Parizi, Kim-Kwang Raymond Choo, Zhiyong Liu, “Classification-based and Energy-Efficient Dynamic Task Scheduling Scheme for Virtualized Cloud Data Center”, IEEE Transactions on Cloud Computing, Volume 9, Issue 4, 2021, Pages 1376 – 1390. DOI: 10.1109/TCC.2019.2918226 [Google Scholar]
  9. Haiyu Zhang and Runliang Jia, “Application of Chaotic Cat Swarm Optimization in Cloud Computing Multi Objective Task Scheduling”, IEEE Access, Volume 11, 2023, Pages 95443 – 95454. DOI: 10.1109/ACCESS.2023.3311028 [Google Scholar]
  10. Lilu Zhu, Kai Huang, Yanfeng Hu, Xianqing Tai, “A Self-Adapting Task Scheduling Algorithm for Container Cloud Using Learning Automata”, IEEE Access, Volume 9, 2021, Pages 81236 – 81252. DOI: 10.1109/ACCESS.2021.3078773 [Google Scholar]
  11. Swati Lipsa, Ranjan Kumar Dash, Nikola Ivković, Korhan Cengiz, “Task Scheduling in Cloud Computing: A Priority-Based Heuristic Approach”, IEEE Access, Volume 11, 2023, Pages 27111 – 27126. DOI: 10.1109/ACCESS.2023.3255781 [Google Scholar]
  12. Deafallah Alsadie, “TSMGWO: Optimizing Task Schedule Using Multi-Objectives Grey Wolf Optimizer for Cloud Data Centers”, IEEE Access, Volume 9, 2021, Pages 37707 – 37725. DOI: 10.1109/ACCESS.2021.3063723 [Google Scholar]
  13. Hongyun Liu, Peng Chen, Xue Ouyang, Hui Gao, Bing Yan, Paola Grosso, Zhiming Zhao, “Robustness challenges in Reinforcement Learning based time-critical cloud resource scheduling: A Meta-Learning based solution”, Future Generation Computer Systems, Elsevier, Volume 146, 2023, Pages 18–33. https://doi.org/10.1016/j.future.2023.03.029 [Google Scholar]
  14. Shashank Swarup, Elhadi M. Shakshuki, Ansar Yasar, “Task Scheduling in Cloud Using Deep Reinforcement Learning”, Procedia Computer Science, Elsevier, Volume 184, 2021, Pages 42–51. https://doi.org/10.1016/j.procs.2021.03.016 [Google Scholar]
  15. Babuli Sahu, Sangram Keshari Swain, Sudheer Mangalampalli, and Satyasis Mishra, “Multiobjective Prioritized Workflow Scheduling in Cloud Computing Using Cuckoo Search Algorithm”, Applied Bionics and Biomechanics, Hindawi, Volume 2023, July 2023, Pages 1–13. https://doi.org/10.1155/2023/4350615 [Google Scholar]
  16. Shuzhen Wan and Lixin Qi, “An Improved Coral Reef Optimization-Based Scheduling Algorithm for Cloud Computing”, Journal of Mathematics, Hindawi, Volume 2021, Article July 2021, Pages 1–16. https://doi.org/10.1155/2021/5532288 [Google Scholar]
  17. Ashutosh Mishra, Manmath Narayan, Sahoo Anurag Satpathy, “H3CSA: A makespan aware task scheduling technique for cloud environments”, Volume 32, Issue 10, 2021, Pages 1–20. https://doi.org/10.1002/ett.4277 [Google Scholar]
  18. Rathinaraja Jeyaraj; Anand Paul, “Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using Ant Colony Optimization”, IEEE Access, Volume 10, 2022 Page 55842 – 55855. DOI: 10.1109/ACCESS.2022.3176729 [Google Scholar]
  19. MD. Ebtidaul Karim, Mirza Mohd Shahriar Maswood, Sunanda Das, and Abdullah G. Alharbi, “BHyPreC: A Novel Bi-LSTM Based Hybrid Recurrent Neural Network Model to Predict the CPU Workload of Cloud Virtual Machine”, IEEE Access, Volume 9, 2021, Pages 131476 – 131495. DOI: 10.1109/ACCESS.2021.3113714 [Google Scholar]
  20. Weipeng Jing, Chuanyu Zhao, Qiucheng Miao, Houbing Song, Guangsheng Chen, “QoS-DPSO: QoS-aware Task Scheduling for Cloud Computing System”, Journal of Network and Systems Management, Springer, Volume 29, 2021, Pages 1–29. https://doi.org/10.1007/s10922–020-09573–6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.