Open Access
Issue |
E3S Web Conf.
Volume 530, 2024
2024 14th International Conference on Future Environment and Energy (ICFEE 2024)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 10 | |
Section | Analysis and Restoration of Aquatic Environment | |
DOI | https://doi.org/10.1051/e3sconf/202453002005 | |
Published online | 29 May 2024 |
- Kusakabe M and Takata H, 2020. Temporal trends of 137Cs concentration in seawaters and bottom sediments in coastal waters around Japan: Implications for the Kd concept in the dynamic marine environment. J. Radioanal. Nucl. Chem., 323, 567–580. [CrossRef] [Google Scholar]
- Takata H, 2022. Environmental recovery from 137Cs contamination in Japanese coastal waters shown by comparison of temporal distributions with European seas. J. Environ. Radioact., 251-252, 106961. [CrossRef] [Google Scholar]
- Kusakabe M, Inatomi N, Takata H, Ikenoue, T, 2017. Decline in radiocesium in seafloor sediments off Fukushima and nearby prefectures. J. Oceanogr., 73, 529–545. [CrossRef] [Google Scholar]
- Otosaka S, 2017. Processes affecting long-term changes in 137Cs concentration in surface sediments off Fukushima. J. Oceanogr., 73, 559–570. [CrossRef] [Google Scholar]
- Otosaka S, Kamidaira Y, Ikenoue T, Kawamura H, 2021. Distribution, dynamics, and fate of radiocesium derived from FDNPP accident in the ocean. J. Nucl. Sci. Technol., 59, 409–423. [Google Scholar]
- Japan Fisheries Agency. Results of the monitoring on radioactivity level in fishery products. Japan: Ministry of Agriculture, Forestry and Fisheries. i. https://www.jfa.maff.go.jp/e/inspection/index.html [Google Scholar]
- Tateda Y, Tsumune D, Tsubono T, Misumi K, Yamada M, Kanda J, Ishimaru T, 2016. Status of 137Cs contamination in marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model two years simulation following the Fukushima accident. J Environ Radioact., 495–501. [CrossRef] [PubMed] [Google Scholar]
- Otosaka S, Kato Y, 2014. Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant accident in seabed sediments: initial deposition and inventories. Environ. Sci. Processes Impacts., 16, 978–990. [CrossRef] [PubMed] [Google Scholar]
- Otosaka S, Kobayashi T, 2013. Sedimentation and remobilization of radiocesium in the coastal area of Ibaraki, 70 km south of the Fukushima Dai-ichi Nuclear Power Plant. Environ. Monit. Assess., 185, 5419–5433. [CrossRef] [PubMed] [Google Scholar]
- Taniguchi K, Onda Y, Smith H.G, Blake W, Yoshimura K, Yamashiki Y, Kuramoto T, Saito K, 2019. Transport and redistribution of radiocesium in Fukushima fallout through rivers. Environ. Sci. Technol., 53, 12339–12347. [CrossRef] [PubMed] [Google Scholar]
- Taniguchi K., Kuramoto T, Onda Y, 2020. Monthly Fluxes of 134Cs and 137Cs in the Rivers Located in the 80 km Radius from TEPCO’s Fukushima Daiichi Nuclear Power Plant; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba: Tsukuba, Japan. [Google Scholar]
- Sakuma K., Nakanishi T, Yoshimura K, Kurikami H, Nanba K, Zheleznyak M, 2019. A modeling approach to estimate the 137Cs discharge in rivers from immediately after the Fukushima accident until 2017. J. Environ. Radioact., 208, 106041. [CrossRef] [Google Scholar]
- Ikenoue T, Shimadera H, Nakanishi T, Kondo A, 2023. Thirty-year simulation of environmental fate of 137Cs in the Abukuma River basin considering the characteristics of 137Cs behavior in land uses. Sci. Total Environ., 876, 162846. [CrossRef] [Google Scholar]
- Ikenoue T, Shimadera H, Nakanishi T, Kondo A, 2023. Thirty-Year Prediction of 137Cs Supply from Rivers to Coastal Waters off Fukushima Considering Human Activities. Water., 15, 15, 2734. [CrossRef] [Google Scholar]
- Kamidaira Y, Uchiyama Y, Kawamura H, Kobayashi T, Otosaka S, 2021. A modeling study on the oceanic dispersion and sedimentation of radionuclides off the coast of Fukushima. J. Environ. Radioact., 238-239, 106724. [CrossRef] [Google Scholar]
- Suzuki S, Amano Y, Enomoto M, Matsumoto A, Morioka Y, Sakuma K, Tsuruta T, Kaeriyama H, Miura H, Tsumune D, Kamiyama K, Wada T, Takata H, 2022. Temporal variability of 137Cs concentrations in coastal sediments off Fukushima. Sci. Total Environ., 831, 154670. [CrossRef] [Google Scholar]
- Misumi K, Tsumune D, Tsubono T, Tateda Y, Aoyama M, Kobayashi T, Hirose K, 2014. Factors controlling the spatiotemporal variation of 137Cs in seabed sediment off the Fukushima coast: implications from numerical simulations. J. Environ. Radioact., 136, 218–228. [CrossRef] [Google Scholar]
- Uchiyama Y, Tokunaga N, Aduma K, Kamidaira Y, Tsumune D, Iwasaki T, Yamada M, Tateda Y, Ishimaru T, Ito Y, Watanabe Y.W, Ikehara K, Fukuda M, Onda Y, 2022. A storm-induced flood and associated nearshore dispersal of the river-derived suspended 137Cs. Sci. Total Environ., 816, 151573. [CrossRef] [Google Scholar]
- Otosaka S, Kambayashi S, Fukuda M, Tsuruta T, Misonou T, Suzuki T, Aono T, 2020. Behavior of Radiocesium in Sediments in Fukushima Coastal Waters: Verification of Desorption Potential through Pore Water. Environ Sci Technol. 54, 13778–13785. [CrossRef] [PubMed] [Google Scholar]
- Japan River Association, 2003. Rainfall and discharge chronology database. [Google Scholar]
- The Ministry of Education, Culture, Sports, Science and Technology, and the Secretariat of the Nuclear Regulation Authority, 2012. Nuclide Analysis of Suspended Sediment Sampled from Rivers in Fukushima Prefecture in the Distribution Survey of Radioactive Substances. [Google Scholar]
- Miyazawa Y, Kuwano-Yoshida A, Doi T, Nishikawa H, Narazaki T, Fukuoka T, Sato K, 2019. Temperature profiling measurements by sea turtles improe ocean state estimation in the Kuroshio-Oyashio Confluence region, Ocean Dynamics, 69, 267–282 [CrossRef] [Google Scholar]
- Miyazawa Y, Varlamov S. M, Miyama T, Guo X, Hihara T, Kiyomatsu K, Kachi M, Kurihara Y, Murakami H, 2017. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three dimensional variational scheme, Ocean Dynamics, 67, 713–728. [CrossRef] [Google Scholar]
- Japan Meteorological Business Support Center, GPV-MSM, http://www.jmbsc.or.jp/jp/online/file/f-online10200.html (in Japanese) [Google Scholar]
- Woodruff S.D, Slutz R.J, Jenne R.L, Steurer P.M, 1987. A comprehensive oceanatmosphere data set. Bull. Am. Meteorol. Soc., 68, 1239–1250. [CrossRef] [Google Scholar]
- Japan Meteorological Business Support Center, GPV-CWM, http://www.jmbsc.or.jp/jp/online/file/f-online20200.html (in Japanese) [Google Scholar]
- Egbert G.D, Erofeeva S.Y, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19 (2), 183–204 [CrossRef] [Google Scholar]
- Egbert G.D, Bennett A.F, Foreman M.G, 1994. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. Oceans., 99245 (C12), 24821–24852. [CrossRef] [Google Scholar]
- Rodriguez E, Morris C.S, Belz J.E, Chapin E.C, Martin J.M, Daffer W, Henslet S, 2005. An Assessment of the SRTM Topographic Products Tech. Rep. JPL DO31639 Jet Propulsion Laboratory, Pasadena, CA, p. 143. [Google Scholar]
- Japan Oceangraphic Data Center, J-EGG500:JODC-Expert Grid data for Geography. [Google Scholar]
- Kusakabe M, Oikawa S, Takata H, Misonoo J, 2013 Spatiotemporal distributions of Fukushima-derived radionuclides in surface sediments in the waters off Miyagi, Fukushima, and Ibaraki prefectures, Japan. Biogeosciences, 10, 5019–5030 [CrossRef] [Google Scholar]
- Japan Atomic Energy Agency, 2020. Database for Radioactive Substance Monitoring Data. [Google Scholar]
- Ambe D, Kaeriyama H, Shigenobu Y, Fujimoto K, Ono T, Sawada H, Saito H, Miki S, Setou T, Morita T, Watanabe T, 2014. Five-minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai-ichi Nuclear Power Plant. J. Environ. Radioact., 138, 264–275. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.