Open Access
Issue |
E3S Web Conf.
Volume 530, 2024
2024 14th International Conference on Future Environment and Energy (ICFEE 2024)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 10 | |
Section | Environmental Biotechnology and Waste-to-Energy | |
DOI | https://doi.org/10.1051/e3sconf/202453003005 | |
Published online | 29 May 2024 |
- Wastewater Management and Sanitation in Asia | Asian Development Bank n.d. https://www.adb.org/features/wastewater-management-and-sanitation-numbers (accessed August 26, 2023). [Google Scholar]
- Bhardwaj S, Das P. A Review: Advantages and Disadvantages of Biogas. International Research Journal of Engineering and Technology 2017. [Google Scholar]
- Avena LG, Almendrala M, Caparanga A. Effects of thermal pretreatment and biotin supplementation on the anaerobic digestion of pineapple (Ananas comosus) wastes, kinetics of methane production, and statistical analysis. Energy Reports 2023;9:202–8. https://doi.org/10.1016/J.EGYR.2023.09.184. [CrossRef] [Google Scholar]
- Gebreeyessus GD, Mekonen A, Alemayehu E. A review on progresses and performances in distillery stillage management. J Clean Prod 2019;232:295–307. https://doi.org/10.1016/j.jclepro.2019.05.383. [CrossRef] [Google Scholar]
- Tariq M, Mehmood A, Abbas Y, Rukh S, Shah FA, Hassan A, et al. Digestate quality and biogas enhancement with laterite mineral and biochar: Performance and mechanism in anaerobic digestion. Renew Energy 2024;220:119703. https://doi.org/10.1016/J.RENENE.2023.119703. [CrossRef] [Google Scholar]
- Aguilar-Torrejón JA, Balderas-Hernández P, Roa-Morales G, Barrera-Díaz CE, Rodríguez-Torres I, Torres-Blancas T. Relationship, importance, and development of analytical techniques: COD, BOD, and, TOC in water—An overview through time. SN Appl Sci 2023;5. https://doi.org/10.1007/s42452-023-05318-7. [Google Scholar]
- Avena LGS. Kinetic Study of Methane Production from Anaerobic Digestion of Pineapple ( Ananas comosus ) Wastes : Effects of Pretreatment and Biotin Supplementation by 2023. [Google Scholar]
- Prapinagsorn W, Sittijunda S, Reungsang A. Co-digestion of napier grass and its silage with cow dung for methane production. Energies (Basel) 2017;10:1–20. https://doi.org/10.3390/en10101654. [Google Scholar]
- Sanni SE, Akinrinola O, Ojima Yusuf E, Fagbiele OO, Agboola O. Chemical Kinetics of Alkaline Pretreatment of Napier Grass (Pennisetum purpureum) Prior Enzymatic Hydrolysis. The Open Chemical Engineering Journal 2018;12:36–56. https://doi.org/10.2174/1874123101812010036. [CrossRef] [Google Scholar]
- Kullavanijaya P, Chavalparit O. The effect of ensiling and alkaline pretreatment on anaerobic acidification of napier grass in the leached bed process. Environmental Engineering Research 2020;25:668–76. https://doi.org/10.4491/eer.2019.231. [CrossRef] [Google Scholar]
- Sp C, Grass N. C-17 Temperature Affects To the Potential of Biogas Production By Co-Fermentation From Chlorella sp. and Napier Grass. Proceeding of 23rd Tri-U International Joint Seminar and Symposium Bogor Agricultural University, Indonesia, 23-28 October 2016 2016. [Google Scholar]
- Menon A, Ren F, Wang JY, Giannis A. Effect of pretreatment techniques on food waste solubilization and biogas production during thermophilic batch anaerobic digestion. J Mater Cycles Waste Manag 2016;18:222–30. https://doi.org/10.1007/s10163-015-0395-6. [CrossRef] [Google Scholar]
- Wang C, Hong F, Lu Y, Li X, Liu H. Improved biogas production and biodegradation of oilseed rape straw by using kitchen waste and duck droppings as co-substrates in two-phase anaerobic digestion. PLoS One 2017;12:1–19. https://doi.org/10.1371/journal.pone.0182361. [Google Scholar]
- Kasulla S, Malik SJ, Yadav A, Kathpal G. Potential of Biogas Generation from Hybrid Napier Grass 2022;6:277–81. [Google Scholar]
- Boonpiyo S, Sittijunda S, Reungsang A. Co-digestion of napier grass with food waste and napier silage with food waste for methane production. Energies (Basel) 2018;11. https://doi.org/10.3390/en11113200. [Google Scholar]
- Sittijunda S. Biogas Production from Hydrolysate Napier Grass by Co-Digestion with Slaughterhouse Wastewater using Anaerobic Mixed Cultures. KKU Res J 2015;20:323–36. [Google Scholar]
- Weerayutsil P, Khoyun U, Khuanmar K. Optimum Ratio of Chicken Manure and Napier Grass in Single Stage Anaerobic Co-digestion. Energy Procedia 2016;100:22–5. https://doi.org/10.1016/j.egypro.2016.10.141. [CrossRef] [Google Scholar]
- Ráduly B, Gyenge L, Szilveszter S, Kedves A, Crognale S. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion. Water Science and Technology 2016;74:431–7. https://doi.org/10.2166/wst.2016.185. [CrossRef] [PubMed] [Google Scholar]
- Mikucka W, Zielinska M. Individual Phenolic Acids in Distillery Stillage Inhibit Its Biomethanization. Energies (Basel) 2022;15. https://doi.org/10.3390/en15155377. [Google Scholar]
- Tansengco ML, Herrera DL, Tejano JC. Treatment of molasses-based distillery wastewater in a pilot-scale anaerobic sequencing batch reactor (ASBR). Electronic Journal of Biology 2016;12:367–73. [Google Scholar]
- Choi Y, Ryu J, Lee SR. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Anim Sci Technol 2020;62:74–83. https://doi.org/10.5187/JAST.2020.62.1.74. [CrossRef] [PubMed] [Google Scholar]
- Phuttaro C, Sawatdeenarunat C, Surendra KC, Boonsawang P, Chaiprapat S, Khanal SK. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour Technol 2019;284:128–38. https://doi.org/10.1016/j.biortech.2019.03.114. [CrossRef] [PubMed] [Google Scholar]
- Kumari P, Tanvi, Chaudhary S, Dhanker R, Goyal Sneh. Analysis of maturity parameters of distillery effluent and unchopped paddy straw through composting using microbial consortia. Pharma Innovation 2018;7:1–7. [CrossRef] [Google Scholar]
- Hakika DC, Sarto S, Mindaryani A, Hidayat M, Mufrodi Z. Detoxification of Distillery Wastewater by AOP Fenton for the Enhancement of Biogas Production. Jurnal Bahan Alam Terbarukan 2022;11:01–7. https://doi.org/10.15294/jbat.v11i1.35844. [CrossRef] [Google Scholar]
- BIO-DIESEL PRODUCTION FROM DISTILLERY WASTE WATER BY OLEAGINOUS YEASTS BY ENHANCING LIPID PRODUCTION USING BIOCHEMICAL 2020:2020. [Google Scholar]
- Saitawee L, Hussaro K, Teekasap S, Cheamsawat N. Biogas proction from anaerobic co-digestion of cow dung and organic wastes (napier pak chong i and food waste) in Thailand: Temperature effect on biogas product. Am J Environ Sci 2014;10:129–39. https://doi.org/10.3844/ajessp.2014.129.139. [CrossRef] [Google Scholar]
- Haryanto A, Hasanudin U, Afrian C, Zulkarnaen I. Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum Purpureum) using batch digester. IOP Conf Ser Earth Environ Sci 2018;141. https://doi.org/10.1088/1755-1315/141/1/012011. [CrossRef] [Google Scholar]
- Adjama I, Derkyi NSA, Uba F, Akolgo GA, Opuko R. Anaerobic Co-Digestion of Human Feces with Rice Straw for Biogas Production: A Case Study in Sunyani. Modelling and Simulation in Engineering 2022;2022. https://doi.org/10.1155/2022/2608045. [CrossRef] [Google Scholar]
- Dube, N. N. Comparison of anaerobic digestion approaches using selected fibrous and non-fibrous organic waste. Cape Peninsula University of Technology. https://etd.cput.ac.za/handle/20.500.11838/3643. [Google Scholar]
- Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels 2021 14:1 2021;14:1–34. https://doi.org/10.1186/S13068-021-02012-X. [Google Scholar]
- Wang M, Wang J, Li Y, Li Q, Li P, Luo L, et al. Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. Fermentation 2022, Vol 8, Page 562 2022;8:562. https://doi.org/10.3390/FERMENTATION8100562. [Google Scholar]
- Jayaraj S, Deepanraj B, Velmurugan S. Study on the Effect of pH on Biogas Production from Food Waste by Anaerobic Digestion. The International Green Energy Confrence 2014;5:799–803. [Google Scholar]
- Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100:10–8. https://doi.org/10.1016/j.biortech.2008.05.027. [CrossRef] [PubMed] [Google Scholar]
- Zainudeen MN, Kwarteng M, Nyamful A, Mohammed L, Mutala M. Effect of temperature and pH variation on anaerobic digestion for biogas production. Ghana Journal of Agricultural Science 2021;56:1–13. https://doi.org/10.4314/gjas.v56i2.1. [CrossRef] [Google Scholar]
- Banu J R, Sugitha S, Kavitha S, Kannah R Y, Merrylin J, Kumar G. Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies. Front Energy Res 2021;9:1–17. https://doi.org/10.3389/fenrg.2021.646057. [CrossRef] [Google Scholar]
- Trosgård E, Granström K, Renström R. Small-scale biogas production in the province of Pampanga, Philippines Småskalig biogasproduktion i Pampangaprovinsen, Filippinerna 2015. [Google Scholar]
- Bahira, Baki AS, Bello A. Effect of Varying pH on Biogas Generation using Cow Dungjournal/drjbb 2018;4:28–33. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.