Open Access
Issue
E3S Web Conf.
Volume 530, 2024
2024 14th International Conference on Future Environment and Energy (ICFEE 2024)
Article Number 05003
Number of page(s) 10
Section Clean Energy Technology and Building Energy Management
DOI https://doi.org/10.1051/e3sconf/202453005003
Published online 29 May 2024
  1. H.S. Min, S.D. Fertahi, T. Bouhal, N.S. Naa and M.A.C. Munaaim: Solar Energy development:Case study in Malaysia and Morocco. International Journal on Emerging Technologies. 10, 106–113 (2019). [Google Scholar]
  2. S. Sreenath, K. Sudhakar and A.F. Yusop: SWOT Analysis of Solar PV Systems in Airport Environment. International Journal on Emerging Technologies. 10(2), 1–7 (2019). [Google Scholar]
  3. M.W. Rahman, et al.: Comparative Analysis of Developed Incremental Conductance (IC) and Perturb & Observe (P&O) MPPT Algorithm for Photovoltaic Applications. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 1–6 (2016). [Google Scholar]
  4. K. Velmurugan and S. Sukchai: Thermal Investigation of Paraffin Wax for Low-Temperature Application. Journal of Advanced Research in Dynamical and Control Systems. 11, 1437–1443 (2019). [Google Scholar]
  5. V. Karthikeyan, C. Sirisamphanwong and S. Sukchai: Investigation on Thermal Absorptivity of PCM Matrix Material for Photovoltaic Module Temperature Reduction. Key Engineering Materials. 777, 97–101 (2018). [CrossRef] [Google Scholar]
  6. K. Velmurugan, et al.: Selection and preparation of suitable composite phase change. Material for PV Module Cooling. 10, 385–394 (2019). [Google Scholar]
  7. Li, Y., Tie, W.C., Zhu, Q.Z. et al.: A Study of LiNO3–NaCl/EG Composite PCM for Latent Heat Storage. Int J Thermophys. 42, 155 (2021). [CrossRef] [Google Scholar]
  8. K. Stejskalová, D. Bujdoš, L. Procházka, B. Smetana, S. Zlá, J. Teslík: Mechanical, Thermal, and Fire Properties of Composite Materials Based on Gypsum and PCM. Materials. 15, 1253 (2022). [CrossRef] [PubMed] [Google Scholar]
  9. T. Wongwuttanasatian, T. Sarikarin, A. Suksri, Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink, Sol. Energy. 195, 47–53 (2020). [CrossRef] [Google Scholar]
  10. S. Homlakorn, K. Velmurugan, A. Suksri, T. Wongwuttanasatian: Comparative study for photovoltaic cooling using metal mesh inserted eutectic phase change material enclosure. Case Studies in Thermal Engineering. 48, 103024 (2023). [CrossRef] [Google Scholar]
  11. Govind S. Menon, et al.: Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy. 188, 986–996 (2022). [CrossRef] [Google Scholar]
  12. P. Seepana, et al.: Thermo-enviro-economic analysis of solar photovoltaic/thermal systemincorporated with u-shaped grid copper pipe, thermal electric generators and nanofluids: An experimental investigation. Journal of Energy Storage. 60, 106611 (2023). [CrossRef] [Google Scholar]
  13. W. Phukaokaew, A. Suksri, T. Wongwuttanasatian. The Modification of Thermal Conductivity of Phase Change Material Using Nano Metal-Oxide Particles. Materials Science Forum. 1113, 69–74 (2024). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.