Open Access
Issue
E3S Web of Conf.
Volume 531, 2024
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2024)
Article Number 01025
Number of page(s) 11
Section Industrial Decarbonization and Green Chemistry
DOI https://doi.org/10.1051/e3sconf/202453101025
Published online 03 June 2024
  1. Gavin M. Mudd, Simon M. Jowitt, Timothy T. Werner, The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities, Ore Geology Reviews, 80, 1160-1190, (2017), https://doi.org/10.1016/j.oregeorev.2016.08.010 [CrossRef] [Google Scholar]
  2. T.I. Yushina, A.R. Yergeshev, A.M. Dumov, А.R. Makavetskas, Study of the material composition of lead-zinc ore of the Shalkiya deposit in order to determine the possibility of its processing, Non-ferrous Metals, 53 (2), 8 - 14, (2022) https://doi.org/10.17580/nfm.2022.02.02 [CrossRef] [Google Scholar]
  3. I.V. Frishberg. Production of Zinc, Cadmium, and Their Alloy Powders, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Second Edition, 615 – 632, (2018) https://doi.org/10.1016/B978-0-08-100543-9.00020-8 [Google Scholar]
  4. S. Pietrzyk, P. Palimąka, M. Stępień, A.Krawczykowska, B. Tora, M. Fatyga, G.Pajor, A.Mańka, Silver recovery from zinc metallurgical sludge – analysis of solutions, E3S Web Conf., 18 01027 (2017) https://doi.org/10.1051/e3sconf/201712301027 [CrossRef] [EDP Sciences] [Google Scholar]
  5. K. Cichy, C. Regula, G. Pajor, Flotation of zinc and lead oxide minerals from Olkusz region calamine ores, E3S Web Conf., 8 01042 (2016) https://doi.org/10.1051/e3sconf/20160801042 [CrossRef] [EDP Sciences] [Google Scholar]
  6. J.Kolacz, Advanced separation technologies for pre-concentration of metal ores and the additional process control, E3S Web Conf., 18, 01001,(2017) https://doi.org/10.1051/e3sconf/201712301001 [CrossRef] [EDP Sciences] [Google Scholar]
  7. H. Zhang, H. Yu, W.Sun, Sh. Lin, Ch. Zhang, Beneficiation of silver and silver-bearing lead–zinc ores: A review, Minerals Engineering, 208, 108608, (2024) https://doi.org/10.1016/j.mineng.2024.108608 [CrossRef] [Google Scholar]
  8. Q. Wei, L. Dong, W. Qin, F. Jiao, Zh.Qi, Ch. Feng, D. Sun, L. Wang, Sh. Xiao, Efficient flotation recovery of lead and zinc from refractory lead-zinc ores under low alkaline conditions, Geochemistry, 81(4), 125769, (2021) https://doi.org/10.1016/j.chemer.2021.125769. [CrossRef] [Google Scholar]
  9. N.M.Komkov, V.A.Luganov, The nature of accretion formation during roasting of zinc concentrates in fluidized bed furnace, Yazawa International Symposium: Metallurgical and Materials Processing: Principles and Techologies; High-Temperature Metal Production, 2, 79 – 89, (2003) [Google Scholar]
  10. K. Yang, Sh.Li, L. Zhang, J.Peng, W. Chen, F.Xie, A. Ma, Microwave roasting and leaching of an oxide-sulphide zinc ore, Hydrometallurgy, 166, 243-251, (2016), https://doi.org/10.1016/j.hydromet.2016.07.012 [CrossRef] [Google Scholar]
  11. Yong Li, Ji-kun Wang, Chang Wei, Chun-Xia Liu, Ji-Bo Jiang, Fan Wang, Sulfidation roasting of low grade lead–zinc oxide ore with elemental sulfur, Minerals Engineering, 23 (7), 563-566, (2010) https://doi.org/10.1016/j.mineng.2010.01.004 [CrossRef] [Google Scholar]
  12. N.Kamariah, D. Kalebic, P. Xanthopoulos, R.Blannin, Fernando P. Araujo, Steven-Friso Koelewijn, Wim Dehaen, K. Binnemans, J. Spooren, Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior, Minerals Engineering, 183, 107587, (2022) https://doi.org/10.1016/j.mineng.2022.107587 [CrossRef] [Google Scholar]
  13. S.S.Naboychenko, Prospects of application of autoclave processes in copper and zinc production in the urals, Tsvetnye Metally, 11, 20 - 24, (2015) https://doi.org/10.17580/tsm.2015.11.0 [CrossRef] [Google Scholar]
  14. A.B. Smaylova, B.B. Smaylov, A.M. Dumov, D. Muraitov, Galena and sphalerite liberation in lead-zinc ore grinding Obogashchenie Rud, 6, 25 - 31, (2016) https://doi.org/10.17580/or.2016.06.05 [Google Scholar]
  15. L.V. Semushkina, D.K. Turysbekov, N.N.Rulev, S.M. Narbekova, Flotation of tailings of lead-zinc ores processing by a combined collector using microemulsification, Obogashchenie Rud, 2, 26 - 31, (2017) https://doi.org/10.17580/or.2017.02.05 [CrossRef] [Google Scholar]
  16. L.Semushkina, T.Dulatbek, N.Tusupbaev, B.Nuraly, A.Mukhanova, The Shalkiya deposit finely disseminated lead-zinc ore processing technology improvement, Obogashchenie Rud, 2, 8-14, (2015) https://doi.org/10.17580/or.2015.02.02 [CrossRef] [Google Scholar]
  17. B.P. Wilson, P. Halli, I. Orko, P.Kangas, M. Lundström, P. Koukkari, Value-added materials from the hydrometallurgical processing of jarosite waste, E3S Web Conf., 8, 01015 (2016) https://doi.org/10.1051/e3sconf/20160801015 [CrossRef] [EDP Sciences] [Google Scholar]
  18. K.Cichy, K.Tobiczyk, A.Mańka, G.Pajor, C. ReguŁa, Possibilities for reusing the waste from the process of Zn-Pb ore beneficiation, E3S Web Conf., 18, 01008, (2017) https://doi.org/10.1051/e3sconf/201712301008 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Sh. Hussaini, S.Kursunoglu, S. Top, Zela Tanlega Ichlas, M. Kaya, Testing of 17- different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing, Minerals Engineering, 168, 106935, (2021) https://doi.org/10.1016/j.mineng.2021.106935 [CrossRef] [Google Scholar]
  20. A. Abay, M.Imbuga, Ch. Malik, K. Singh, Dmitriy Borodin, Geo-Resources Recycling as the Way of Mining Wastes Disposing, E3S Web Conf., 41, 02010, (2018) https://doi.org/10.1051/e3sconf/20184102010 [CrossRef] [EDP Sciences] [Google Scholar]
  21. V.Shevko, P.Kaskin, A.Badikova, D.Amanov. Obtaining of ferrosilicon from technogenic magnetite concentrate. Kompleksnoe Ispolzovanie Mineralnogo Syra, 313(2), 71–78, (2020) https://doi.org/10.31643/2020/6445.20 [CrossRef] [Google Scholar]
  22. Roine, A. “HSC Chemistry®”, [software] Metso:Outotec, Pori, 2021. Available at: http://www.mogroup.com/hsc [Accessed: 11 October 2021] [Google Scholar]
  23. Y.Akylbekov, V. Shevko, G. Karatayeva, Thermodynamic prediction of the possibility of comprehensive processing chrysotile-asbestos waste Case Studies in Chemical and Environmental Engineering, 8, art. no. 100488, (2023) https://10.1016/j.cscee.2023.100488 [Google Scholar]
  24. V.M.Shevko, A.D.Badikova, R.A. Uteeva, Interaction of tricalcium phosphate with products of carbothermic reduction of silicon oxide, Metalurgija, 62 (3–4), 447–450, (2023) [Google Scholar]
  25. G. Kaptay, On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282, 283, 387–401, (2006) https://doi.org/10.1016/j.colsurfa.2005.12.021 [CrossRef] [Google Scholar]
  26. A.Nushtaeva, N.Vilkova, Foams and emulsions stabilized by solid particles: mechanisms of stability, University proceedings. Volga region. Natural sciences, 74-85, (2017) https://doi.org/10.21685/2307-9150-2017-4-6 [Google Scholar]
  27. V.Shevko, B.Makhanbetova, D.Aitkulov,Theoretical and experimental substantiation of obtaining an alloy from flotation tailings of lead-zinc sulfide ore. Physicochemical Problems of Mineral Processing, 59(1), 161853. (2023) https://doi.org/10.37190/ppmp/161853 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.