Open Access
Issue
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
Article Number 02002
Number of page(s) 13
Section Applied Technological Innovations for Sustainable Industrial Environments
DOI https://doi.org/10.1051/e3sconf/202453202002
Published online 06 June 2024
  1. Abreu, N., Pinto, A., Matos, A., Pires, M. Procedural Point Cloud Modelling in Scan-to-BIM and Scan-vs-BIM Applications: A Review. ISPRS Int. J. Geo-Inf. 12, 260 (2023) https://doi.org/10.3390/ijgi12070260 [CrossRef] [Google Scholar]
  2. Mudit B., Sukhdeep S. D. “3D Scanning for Reverse Engineering- Technological Advancements, Process Overview, Accuracy Inspection, Challenges and Remedies”. International Journal of Emerging Technologies in Engineering Research (IJETER). Vol. 5. (2017). https://www.ijeter.everscience.org/Manuscripts/Volume-5/Issue-10/Vol-5-issue-10-M-07.pdf [Google Scholar]
  3. Valerga, A. P, Jimenez, R. A., Fernandez S., Fernandez, S. “Photogrammetry as an Engineering Design Tool”. In book: Product Design. BY 3.0. (2020). https://doi.org.10.5772/intechopen.92998 [Google Scholar]
  4. Javaid, M., Haleen, A., Pratap R., Suman, R. “Industrial Perspectives of 3D scanning: Features, Roles and it’s Analytical Applications”. Sensors International 2. (2021). https://10.1016/j.sintl.2021.100114 [Google Scholar]
  5. Abid H., Mohd J., Ravi P. S., Shanay R., Rajiv S., Lalit K., Ibrahim H. K. “Exploring the potential of 3D scanning in Industry 4.0: An overview”. International Journal of Cognitive Computing in Engineering. Vol 3. (2022). https://doi.org/10.1016/j.ijcce.2022.08.003 [Google Scholar]
  6. Lang Z., Guoxing S., Yong L., Weiqing L. “Point cloud denoising review: from classical to deep learning-based approaches”. Graphical Models 12. Vol 5. (2022). https://www.researchgate.net/publication/360326425_Point_cloud_denoising_review_from_classical_to_deep_learning-based_approaches [Google Scholar]
  7. Zahra A., Qureshi, R., Sajjad, M., Sadak, F., Nawaz, M, Ahmad Khan, H., Uzair, M. “Current advances in imaging spectroscopy and its state-of-the-art applications”. Expert Systems with Applications. Vol 238. https://doi.org/10.1016/j.eswa.2023.122172 [PubMed] [Google Scholar]
  8. Spencer, B.F., Hoskere, V., & Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering, 5(2), 199–222 (2019) https://doi.org/10.1016/j.eng.2018.11.030 [Google Scholar]
  9. Andriasyan, M., Moyano, J., Nieto-Julián, J.E., Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 12, 1094 (2020) https://doi.org/10.3390/rs12071094 [CrossRef] [Google Scholar]
  10. Catbas, F.N., Cano, J.A., Luleci, F., Walters, L.C., Michlowitz, R. On the Generation of Digital Data and Models from Point Clouds: Application to a Pedestrian Bridge Structure. Infrastructures 9, 6 (2024) https://doi.org/10.3390/infrastructures9010006 [Google Scholar]
  11. Al Shaini, I., Blanco, A.C.T. Bridge deck surface damage assessment using point cloud data. ABEN 4, 31 (2023). https://doi.org/10.1186/s43251-023-00110-4 [CrossRef] [Google Scholar]
  12. Pan, N.-H., Isnaeni, N.N. Integration of Augmented Reality and Building Information Modeling for Enhanced Construction Inspection - A Case Study. Buildings 14, 612 (2024) https://doi.org/10.3390/buildings14030612 [CrossRef] [Google Scholar]
  13. S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez, C. Wellington, “3D Point Cloud Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization, and Perception,” in IEEE Signal Processing Magazine, vol. 38, no. 1, pp. 68–86, Jan (2021), https://doi.org/10.1109/MSP.2020.2984780 [CrossRef] [Google Scholar]
  14. Kiziltas, S., et al. “Enhanced Structural Analysis through High-Density Point Clouds: Techniques and Case Studies.” Journal of Structural Integrity and Maintenance”. International Journal of Building Pathology and Adaptation. Vol. 345. Jun (2021), https://www.emerald.com/insight/2398-4708.htm [Google Scholar]
  15. Ying, Z, Zhao, S., Bhuyan, S., Mishra, C. S., Kandemir, M. T., Das, C. R. “Pushing Point Cloud Compression to the Edge”. International Symposium on Microarchitecture (MICRO). Pg 282. (2022). https://doi.org/10.1109/MICRO56248.2022.0003 [Google Scholar]
  16. Minsuk, C., Minhyeok, K., Gwanyoung, K, Sera, K. “3D scanning technique for obtaining road surface and its applications”. International Journal of Precision Engineering and Manufacturing. Vol 18. (2017). https://10.1007/s12541-017-0044-1 [Google Scholar]
  17. Xóchiti, M., G., Oleg, S., Vera, T., Lopez, M. “Optimization of 3D laser scanning speed by use of combined variable step”. Optics and Lasers in Engineering. Vol 50. (2014). https://10.1016/j.optlaseng.2013.08.011 [Google Scholar]
  18. Burcu, G., E., Jerome, F., H. “Data Processing of Point Clouds for Object Detection for Structural Engineering Applications”. Computer-Aided Civil and Infrastructure Engineering. Vol 28(7). https://10.1111/mice.12016 [Google Scholar]
  19. Jawor, J., Luft, M., Łukasik, Z., Szychta, E. “Integration of Cloud Computing and Reverse Engineering 3D Scanning for marine applications”. Portal Komunikacji Naukowej. Vol 30 (102). (2012). ISSN : 1733-8670 [Google Scholar]
  20. S.G. Rahul, Rajnikant Kushwaha. “Smart structural health monitoring system using IoT and wireless technology”. Recent Advancement of IoT Devices in Pollution Control and Health Applications. 2023. [Google Scholar]
  21. Karatuğ, Ç. Arslanoğlu, Yasin, Guedes, S., C. “Review of maintenance strategies for ship machinery systems. Journal of Marine Engineering & Technology”. Vol. 22. (2023) https://10.1080/20464177.2023.2180831 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.