Open Access
Issue
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
Article Number 02006
Number of page(s) 11
Section Applied Technological Innovations for Sustainable Industrial Environments
DOI https://doi.org/10.1051/e3sconf/202453202006
Published online 06 June 2024
  1. IoT Snapshot 2022. (2022, April 27). IoT Snapshot 2022. https://resources.logicalis.com/iot-snapshot-2022 [Google Scholar]
  2. Empresas de América Latina deben derribar el estigma de que la salud ocupacional es un gasto. (2019, May 17). Empresas de América Latina deben derribar el estigma de que la salud ocupacional es un gasto. https://www.sela.org/es/prensa/servicio-informativo/20190517/si/40676/saludocupa [Google Scholar]
  3. Empresas ecuatorianas tienen una brecha tecnológica que reducir. Empresas ecuatorianas tienen una brecha tecnológica que reducir. Retrieved April 27, 2024, from https://www.primicias.ec/noticias/economia/empresas-ecuador-brecha-tecnologica-cubrir/ [Google Scholar]
  4. Tecnológicas de Mayor Impacto en el Ecuador para el Año 2020. (2020, April 27). Tendencias Tecnológicas de Mayor Impacto en el Ecuador para el Año 2020. https://www.ey.com/es_ec/consulting/tendencias-tecnologicas-de-mayor-impacto-en-el-ecuador-para-el [Google Scholar]
  5. T.A. Bentley, C. Caponecchia, L.A. Onnis, Y. Brunetto, B. Farr-Wharton, M. Cattani, et al., A systems model for the design of occupational health and safety management systems inclusive of work-from-home arrangements. Applied Ergonomics 109, 103966 (2023), DOI: 10.1016/j.apergo.2023.103966 [CrossRef] [Google Scholar]
  6. T.V. Der Voordt, P. Jensen, The impact of healthy workplaces on employee satisfaction, productivity, and costs. Journal of Corporate Real Estate, 25(1), 29–49 (2023), https://doi.org/10.1108/JCRE-03-2021-0012 [CrossRef] [Google Scholar]
  7. A.G. Friebel, R.E. Potter, M. Dollard, Health and safety representatives’ perceptions of occupational health and safety policy developments to improve work-related psychological health: Applying the theory of planned behaviour. Safety Science, 172, 106410 (2024), https://doi.org/10.1016/j.ssci.2023.106410 [CrossRef] [Google Scholar]
  8. K. Tange, X. Fafoutis, N. Dragoni, N., A Systematic Survey of Industrial Internet of Things Security: Requirements and Fog Computing Opportunities. IEEE Communications Surveys & Tutorials, 22(4), 2489–2520 (2020), https://doi.org/10.1109/COMST.2020.3011208 [CrossRef] [Google Scholar]
  9. S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha, An explainable predictive maintenance strategy for multi-fault diagnosis of rotating machines using multi-sensor data fusion, Decision Analytics Journal, 10, 100425 (2024), https://doi.org/10.1016/j.dajour.2024.100425 [CrossRef] [Google Scholar]
  10. M. Madadi, S. Rezaei, A. Khojandi, Dynamic joint sensor selection and maintenance optimization in partially observable deteriorating systems. Computers & Industrial Engineering, 187, 109853 (2024), https://doi.org/10.1016/j.cie.2023.109853 [CrossRef] [Google Scholar]
  11. G. Thirumal, C. Kumar, Multilevel sensor deployment approach in IIoT-based environmental monitoring system in underground coal mines. Computer Communications, 195, 1–13 (2022), https://doi.org/10.1016/j.comcom.2022.08.002 [CrossRef] [Google Scholar]
  12. R. Sharma, B. Villányi, Evaluation of corporate requirements for smart manufacturing systems using predictive analytics. Internet of Things, 19, 100554 (2022), https://doi.org/10.1016/j.iot.2022.100554 [CrossRef] [Google Scholar]
  13. A. Mosenia, N.K. Jha, A Comprehensive Study of Security of Internet-of-Things. IEEE Transactions on Emerging Topics in Computing, 5(4), 586–602 (2017), https://doi.org/10.1109/TETC.2016.2606384 [CrossRef] [Google Scholar]
  14. E. Şen, E. Amrita Dash, Unveiling the Shadows: Exploring the Security Challenges of the Internet of Things (IoT). Indian Scientific Journal Of Research In Engineering And Management, 15 (2023). doi: 10.55041/ijsrem23970 [Google Scholar]
  15. M.Q. Tran, H.P. Doan, V.Q. Vu, L.T. Vu, Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects. Measurement, 207, 112351 (2023), https://doi.org/10.1016/j.measurement.2022.112351 [CrossRef] [Google Scholar]
  16. X. Zhan, W. Wu, L. Shen, W. Liao, Z. Zhao, J. Xia, Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse. Safety Science, 152, 105766 (2022), https://doi.org/10.1016/j.ssci.2022.105766 [CrossRef] [Google Scholar]
  17. M.C. May, D. Glatter, D. Arnold, D. Pfeffer, G. Lanza, IIoT System Canvas — From architecture patterns towards an IIoT development framework, Journal of Manufacturing Systems, 72, 437–459 (2024), https://doi.org/10.1016/j.jmsy.2023.12.001 [CrossRef] [Google Scholar]
  18. R. Bavaresco, H. Aruda, E. Rocha, J. Barbosa, L. Guann-Pyng, Internet of Things and occupational well-being in industry 4.0: A systematic mapping study and taxonomy. Computers & Industrial Engineering, 161, 107670 (2021), https://doi.org/10.1016/j.cie.2021.107670 [CrossRef] [Google Scholar]
  19. T. Hewavitharana, S. Nanayakkara, A. Perera, P. Perera, Modifying the Unified Theory of Acceptance and Use of Technology (UTAUT) Model for the Digital Transformation of the Construction Industry from the User Perspective. Informatics, 8(4), 81 (2021), https://doi.org/10.3390/informatics8040081 [CrossRef] [Google Scholar]
  20. J. Häikiö, J. Kallio, S.M. Mäkelä, J. Keränen, IoT-based safety monitoring from the perspective of construction site workers. International Journal of Occupational and Environmental Safety, 4(1), 1–14 (2020), https://doi.org/10.24840/21840954_004.001_0001 [CrossRef] [Google Scholar]
  21. K. Sun, T. Lan, Y.M. Goh, S. Safiena, Y.H. Huang, B. Lytle, et al. An interpretable clustering approach to safety climate analysis: Examining driver group distinctions. Accident Analysis & Prevention, 196, 107420 (2024), https://doi.org/10.1016/j.aap.2023.107420 [CrossRef] [Google Scholar]
  22. A.J. Nakhal, R. Patriarca, G. Di Gravio, G. Antonioni, N. Paltrinieri, Investigating occupational and operational industrial safety data through Business Intelligence and Machine Learning, Journal of Loss Prevention in the Process Industries, 73, 104608 (2021), https://doi.org/10.1016/j.jlp.2021.104608 [CrossRef] [Google Scholar]
  23. N.M. Salih, K. Jacksi, Semantic Document Clustering using K-means algorithm and Ward’s Method, In Proceedings of the International Conference on Advanced Science and Engineering (ICOASE), virtual conference, December 23-24 (2020), 1–6 [Google Scholar]
  24. M. Aria, C. Cuccurullo, Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), 959–975 (2017), https://doi.org/10.1016/j.joi.2017.08.007 [CrossRef] [Google Scholar]
  25. J. Silva, P. Pizarro, Seguridad y la salud ocupacional SST e IIOT desde la perspectiva de los trabajadores en grandes empresas de Guayaquil, Bachelor Thesis, University of Guayaquil, Ecuador, 2023, http://repositorio.ug.edu.ec/handle/redug/67268 [Google Scholar]
  26. J. Demšar, T. Curk, A. Erjavec, et al., Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, 14, 2349–2353 (2013), https://jmlr.org/papers/volume14/demsar13a/demsar13a.pdf [Google Scholar]
  27. A.R. Gómez-García, C.A. Portalanza-Chavarría, C.A. Arias-Ulloa, C.E. Espinoza-Samaniego, Salaried Workers’ Self-Perceived Health and Psychosocial Risk in Guayaquil, Ecuador. International journal of environmental research and public health, 17(23), 9099 (2020), https://doi.org/10.3390/ijerph17239099 [CrossRef] [PubMed] [Google Scholar]
  28. M. Karatas, L. Eriskin, M. Devici, D. Pamucar, H. Garg, Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200(15), 116912 (2022), https://doi.org/10.1016/j.eswa.2022.116912 [CrossRef] [Google Scholar]
  29. A. Montaño-Gómez, Y. González-Cañizalez, S. Coello-Pisco, J. Hidalgo-Crespo, Jerarquización de zonas de atención prioritaria para la minimización del riesgo biológico en situación de crisis, Rev. Salud Pública, 24(5), 1–8 (2022), https://doi.org/10.15446/rsap.V24n5.102219 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.