Open Access
Issue |
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 14 | |
Section | Applied Technological Innovations for Sustainable Industrial Environments | |
DOI | https://doi.org/10.1051/e3sconf/202453202008 | |
Published online | 06 June 2024 |
- M. Khojastehnazhand, M. Omid, A. Tabatabaeefar et al., Development of a lemon sorting system based on color and size, African Journal of Plant Science 4, 122 (2010). [Google Scholar]
- X. Liming, Z. Yanchao, Automated strawberry grading system based on image processing, Computers and Electronics in Agriculture 71, 32 (2010). [Google Scholar]
- H. Maeda, T. Akagi, R. Tao, Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (diospyros kaki) cultivars, Scientia Horticulturae 228, 41 (2018). [CrossRef] [Google Scholar]
- M.H. Hu, Q.L. Dong, P.K. Malakar, B.L. Liu, G.K. Jaganathan, Determining banana size based on computer vision, Int. Journal of Food Properties 18, 508 (2015). [CrossRef] [Google Scholar]
- J. Ehiem, K. Simonyan, Physical properties of wild mango fruit and nut, International Agrophysics 26 (2012). [Google Scholar]
- M.R. Satpute, S.M. Jagdale, Automatic fruit quality inspection system, in Int. Conf. on Inventive Computation Technologies (IEEE, 2016), Vol. 1, pp. 1–4 [Google Scholar]
- J. Blasco, N. Aleixos, E. Moltó, Machine vision system for automatic quality grading of fruit, Biosystems Engineering 85, 415 (2003). [CrossRef] [Google Scholar]
- Y. Al Ohali, Computer vision based date fruit grading system: Design and implementation, Journal of King Saud University-Computer and Information Sciences 23, 29 (2011). [CrossRef] [Google Scholar]
- G. ElMasry, N. Wang, A. ElSayed, M. Ngadi, Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry, Journal of Food Engineering 81, 98 (2007). [CrossRef] [Google Scholar]
- G. ElMasry, N. Wang, C. Vigneault, J. Qiao, A. ElSayed, Early detection of apple bruises on different background colors using hyperspectral imaging, LWT-Food Science and Technology 41, 337 (2008). [CrossRef] [Google Scholar]
- S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, J. Blasco, Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables, Food and Bioprocess Technology 4, 487 (2011). [CrossRef] [Google Scholar]
- N. Kondo, Robotization in fruit grading system, Sensing and Instrumentation for Food Quality and Safety 3, 81 (2009). [CrossRef] [Google Scholar]
- M.A. Ali, K.W. Thai, Automated fruit grading system, in Int. Symposium in Robotics and Manufacturing Automation (IEEE, 2017), pp. 1–6 [Google Scholar]
- M.P. Arakeri et al., Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry, Procedia Computer Science 79, 426 (2016). [CrossRef] [Google Scholar]
- M. Shiddiq, Herman, D.S. Arief, O.P. Yesyaf, C. Lase, I.R. Husein, S. Ayunda, Volume measurement of oil palm fresh fruit bunches using computer vision, in AIP Conference Proceedings (AIP Publishing LLC, 2022), Vol. 2663, p. 030007 [Google Scholar]
- S. Jana, R. Parekh, B. Sarkar, A de novo approach for automatic volume and mass estimation of fruits and vegetables, Optik 200, 1 (2020). [Google Scholar]
- R.G. de Luna, E.P. Dadios, A.A. Bandala, R.R.P. Vicerra, Size classification of tomato fruit using thresholding, machine learning, and deep learning techniques, Journal of Agricultural Science 41, 586 (2019). [Google Scholar]
- T. Van De Looverbosch, M.H.R. Bhuiyan, P. Verboven, M. Dierick, D. Van Loo, J. De Beenbouwer, J. Sijbers, B. Nicolaï, Nondestructive internal quality inspection of pear fruit by x-ray ct using machine learning, Food Control 113, 1 (2020). [Google Scholar]
- C. Nandi, B. Tudu, C. Koley, in Sensing technology: current status and future trends II (Springer, 2014), pp. 27–46 [CrossRef] [Google Scholar]
- S. Xu, J. Ren, H. Lu, X. Wang, X. Sun, X. Liang, Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy, Postharvest Biology and Technology 192, 1 (2022). [Google Scholar]
- V. Bhole, A. Kumar, Mango quality grading using deep learning technique: perspectives from agriculture and food industry, in Proceedings of the 21st Annual Conf. on Information Technology education (2020), pp. 180–186 [Google Scholar]
- M.M. Raikar, S. Meena, C. Kuchanur, S. Girraddi, P. Benagi, Classification and grading of okra-ladies finger using deep learning, Procedia Computer Science 171, 2380 (2020). [CrossRef] [Google Scholar]
- A. Helwan, M.K. Sallam Ma’aitah, R.H. Abiyev, S. Uzelaltinbulat, B. Sonyel, Deep learning based on residual networks for automatic sorting of bananas, Journal of Food Quality 2021, 1 (2021). [CrossRef] [Google Scholar]
- B. Zheng, G. Sun, Z. Meng, R. Nan, Vegetable size measurement based on stereo camera and keypoints detection, Sensors 22, 1617 (2022). [CrossRef] [PubMed] [Google Scholar]
- R. Fukui, K. Kawae, S. Warisawa, Development of a tomato volume estimating robot that autonomously searches an appropriate measurement position–basic feasibility study using a tomato bed mock-up–, Journal of Robotics and Mechatronics 30, 173 (2018). [CrossRef] [Google Scholar]
- A. Gongal, M. Karkee, S. Amatya, Apple fruit size estimation using a 3d machine vision system, Information Processing in Agriculture 5, 498 (2018). [CrossRef] [Google Scholar]
- K.M. Dawson-Howe, D. Vernon, Simple pinhole camera calibration, Int. Journal of Imaging Systems and Technology 5, 1 (1994). [CrossRef] [Google Scholar]
- R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, V. Koltun, Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer (2019) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.