Open Access
Issue
E3S Web Conf.
Volume 534, 2024
International Scientific and Practical Conference Innovations in Construction and Smart Building Technologies for Comfortable, Energy Efficient and Sustainable Lifestyle (ICSBT 2024)
Article Number 01004
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202453401004
Published online 10 June 2024
  1. H. Perez, J.H.M. Tah, A. Mosavi, Deep learning for detecting building defects using convolutional neural networks. Sensors 19, 3556 (2019). https://doi.org/10.3390/s19163556 [CrossRef] [PubMed] [Google Scholar]
  2. K. Simonyan, A. Zisserman A, Very deep convolutional networks for large-scale image recognition. arXiv 1409.1556 (2014). https://arxiv.org/abs/1409.1556 [Google Scholar]
  3. R.S. Rajadurai, S-T. Kang, Automated vision-based crack detection on concrete surfacesusing deep learning. Appl. Sci. 11, 5229 (2021). https://doi.org/10.3390/app11115229 [CrossRef] [Google Scholar]
  4. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Communications of the ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386 [CrossRef] [Google Scholar]
  5. S. Dorafshan, C. Coopmans, R.J. Thomas, M. Maguire, Deep learning neural networks for sUAS-assisted structural inspections: feasibility and application, in Proceedings of 2018 International Conference on Unmanned Aircraft Systems, Dallas, USA, June 12-15 (2018), 874–882. https://doi.org/10.1109/ICUAS.2018.8453409 [Google Scholar]
  6. P-J. Chun, T. Yamane, Yu. Maemura, A deep learning-based image captioning method to automatically generate comprehensive explanations of bridge damage. Comput. Aided Civ. Inf. 37, 1387–1401 (2022). https://doi.org/10.1111/mice.12793 [CrossRef] [Google Scholar]
  7. H.S. Munawar, A.W.A. Hammad, A. Haddad, C.A.P. Soares, S.T. Waller, Image-based crack detection methods: a review. Infrastructures 6, 115 (2021). https://doi.org/10.3390/infrastructures6080115 [CrossRef] [Google Scholar]
  8. M. Maguire, S. Dorafshan, R.J. Thomas, SDNET2018: A concrete crack image dataset for machine learning applications. Utah State University (2018). https://doi.org/10.15142/T3TD19 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.