Open Access
Issue
E3S Web Conf.
Volume 534, 2024
International Scientific and Practical Conference Innovations in Construction and Smart Building Technologies for Comfortable, Energy Efficient and Sustainable Lifestyle (ICSBT 2024)
Article Number 01013
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202453401013
Published online 10 June 2024
  1. S. Issenov, P. Antipov, M. Koshumbayev, D. Issabekov, Development of a wind turbine with two multidirectional wind wheels. Eastern-European J. Enterp. Technol. 1, 47–57 (2024). https://doi.org/10.15587/1729-4061.2024.299128 [CrossRef] [Google Scholar]
  2. M. Romeo, S. Ciortan, V. Amortila, E. Rusu, Long-term wind speed evaluation for romanian wind farms, in advances in clean energy systems and technologies. L. Chen, Ed. Green Energy Technol. (2024). https://doi.org/10.1007/978-3-031-49787-2_7 [Google Scholar]
  3. F. Nielsen, Wind Energy, Wind Loads in Offshore wind energy: environmental conditions and dynamics of fixed and floating turbines (2024). https://doi.org/10.1017/9781009341455.004 [CrossRef] [Google Scholar]
  4. T. Gu, J. Wang, F. Shen, H. Yue, G. Wu, H. Wu, H. Wang, 3D wind field construction with multiple wind profilers, in communications. Signal Process. Syst. (2024). https://doi.org/10.1007/978-981-99-7505-1_47 [Google Scholar]
  5. V. Rao, The interaction between synoptic wind and local wind circulations, sea breeze. Asian Acad. Res. J. Multidiscip. 2, 105 (2024). [Google Scholar]
  6. A. Chiroşcă, L. Rusu, Wind climate analysis at the future wind farm positions in the Mediterranean Sea. Adv. Clean Energy Syst. Technol. (2024). https://doi.org/10.1007/978-3-031-49787-2_11 [Google Scholar]
  7. E. Antonini, E. Virguez, S. Ashfaq et al., Identification of reliable locations for wind power generation through a global analysis of wind droughts. Commun. Earth & Environ. 5, 1–9 (2024). https://doi.org/10.1038/s43247-024-01260-7 [CrossRef] [Google Scholar]
  8. H. Zhou, Q. Luo, L. Yuan, Downscaling and Wind Resource Assessment of Climatic Wind Speed Data Based on Deep Learning: A Case Study of the Tengger Desert Wind Farm. Atmosphere 15, 271 (2024). https://doi.org/10.3390/atmos15030271 [CrossRef] [Google Scholar]
  9. A. Wani, R. Varma, A. Ahuja, Wind effects on rectangular plan building located in a hilly terrain: A wind tunnel investigation. Sādhanā 49 (2024). https://doi.org/10.1007/s12046-023-02399-3 [Google Scholar]
  10. W. Wu, Z. Pan, J. Zhou et al., Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection. Sensors 24, 1371 (2024). https://doi.org/10.3390/s24051371 [CrossRef] [PubMed] [Google Scholar]
  11. M. Vardaroglu, Z. Gao, A. M. Avossa, F. Ricciardelli, Numerical investigation of a tlp wind turbine under wind and wave loads, in Proceedings of the Conference of the Italian Association for Wind Engineering, IN VENTO 2022, 227–238 (2024). https://doi.org/10.1007/978-3-031-53059-3_20 [Google Scholar]
  12. A. Mana, Winds of change: enhancing wind power generation forecasting with lstm models and advanced techniques in a single turbine wind farm. AI Applic. (2024). https://doi.org/10.47852/bonviewAIA42021106 [Google Scholar]
  13. S. Alsaadi, C. Crabtree, P. Matthews, M. Shahbazi, Understanding wind turbine power converter reliability under realistic wind conditions. IET Power Electronics (2024). https://doi.org/10.1049/pel2.12670 [Google Scholar]
  14. C. Huang, C. Liu, M. Zhong, H. Sun, T. Gao, Y. Zhang, Research on wind turbine location and wind energy resource evaluation methodology in port scenarios. Sustain. 16, 1074 (2024). https://doi.org/10.3390/su16031074 [CrossRef] [Google Scholar]
  15. X. Wang, C. Yang, J. Zhang, J. Zhou, H. Liang, J. Jiang, Y. Cai, M. Huang, Z. Lan, Study on the wind deviation characteristics of y-type insulator string under the action of strong wind. Adv. Civ. Eng. 1–10 (2024). https://doi.org/10.1155/2024/5542173 [Google Scholar]
  16. C.-C. Wei, C. Cheng-Shu, Assessment of offshore wind power potential and wind energy prediction using recurrent neural networks. J. Mar. Sci. Eng. 12, 283 (2024). https://doi.org/10.3390/jmse12020283 [CrossRef] [Google Scholar]
  17. O. Onishchenko, A. Bukaros, O. Melnyk, V. Yarovenko, A. Voloshyn, O. Lohinov, Ship refrigeration system operating cycle efficiency assessment and identification of ways to reduce energy consumption of maritime transport. Stud. Syst. Decis. Control 481, 641–652 (2023). https://doi.org/10.1007/978-3-031-35088-7_36 [CrossRef] [Google Scholar]
  18. O.A. Onishchenko, O.M. Melnyk, V.A. Yarovenko, N.I. Aleksandrovska, S.V. Kurdiuk, D.G. Parmenova, O.O. Storchak, Study of efficiency and advancement of marine engine oil purification and filtration technologies. J. Chem. Technol. 31 (4), 762–774 (2023). https://doi.org/10.15421/jchemtech.v31i4.285643 [Google Scholar]
  19. N.D. Pankratova, K.D. Grishyn, V.E. Barilko, Digital twins: stages of concept development, areas of use, prospects. Syst. Res. Inf. Tech. 2, 7–21 (2023). https://doi.org/10.20535/SRIT.2308-8893.2023.2.01 [Google Scholar]
  20. K.V. Lipianina-Honcharenko, Y.V. Bodyanskiy, A.O. Sachenko, Intelligent information system of the city’s socio-economic infrastructure. Syst. Res. Inf. Tech. 3, 108–120 (2023). https://doi.org/10.20535/SRIT.2308-8893.2023.3.08 [Google Scholar]
  21. D.O. Bezzubov, I.S. Bakhov, Y. Klyuyeva, T. Byrkovych, Aviation legal risk management: The concept, structure, and categories. J. Adv. Res. Dyn. Control Syst. 12 (4), 703–711 (2020). https://doi.org/10.5373/JARDCS/V12SP4/20201537 [CrossRef] [Google Scholar]
  22. D. Bezzubov, K. Dobkina, Y. Klyuyeva, Y. Podolian, O. Starodubova, Investment security of aviation enterprises in the current conditions of the development of the world economy. Rel. Int. Mund. Atual. 1 (39), e06083 (2023). https://doi.org/10.21902/Revrima.v6i39.6083 [Google Scholar]
  23. O. Melnyk, O. Onishchenko, S. Onyshchenko, V. Golikov, V. Sapiha, O. Shcherbina, V. Andrievska, Study of environmental efficiency of ship operation in terms of freight transportation effectiveness provision. TransNav 6 (4), 723–729 (2022). https://doi.org/10.12716/1001.16.04.14 [CrossRef] [Google Scholar]
  24. O. Melnyk, S. Onyshchenko, O. Onishchenko, Development measures to enhance the ecological safety of ships and reduce operational pollution to the environment. Sci. J. Silesian Univ. Technol. Ser. Transp. 118, 195–206 (2023). https://doi.org/10.20858/sjsutst.2023.118.13 [Google Scholar]
  25. O. Melnyk, S. Onyshchenko, O. Onishchenko, O. Shumylo, A. Voloshyn, Y. Koskina, Y. Volianska, Review of ship information security risks and safety of maritime transportation issues. TransNav 16 (4), 717–722 (2022). https://doi.org/10.12716/1001.16.04.13 [CrossRef] [Google Scholar]
  26. O. Melnyk, S. Onyshchenko, Navigational safety assessment based on Markov-Model approach. Pomorstvo 36 (2), 328–337 (2022). https://doi.org/10.31217/p.36.2.16 [CrossRef] [Google Scholar]
  27. O. Melnyk, O. Sagaydak, O. Shumylo, O. Lohinov, Modern aspects of ship ballast water management and measures to enhance the ecological safety of shipping. Stud. Syst. Decis. Control 481, 681–694 (2023). https://doi.org/10.1007/978-3-031-35088-7_39 [CrossRef] [Google Scholar]
  28. O. Melnyk, S. Onyshchenko, O. Onishchenko, O. Lohinov, V. Ocheretna, Integral approach to vulnerability assessment of ship’s critical equipment and systems. Trans. Mar. Sci. 12 (1), 195–206 (2023). https://doi.org/10.7225/toms.v12.n01.002 [Google Scholar]
  29. Y. Volyanskaya, S. Volyanskiy, O. Onishchenko, S. Nykul, Analysis of possibilities for improving energy indicators of induction electric motors for propulsion complexes of autonomous floating vehicles. East. Eur. J. Enterp. Technol. 2 (8-92), 25–32 (2018). https://doi.org/10.15587/1729-4061.2018.126144 [Google Scholar]
  30. Y. Volyanskaya, S. Volyanskiy, A. Volkov, O. Onishchenko, Determining energy-efficient operation modes of the propulsion electrical motor of an autonomous swimming apparatus. East. Eur. J. Enter. 6 (8-90), 11–16 (2017). https://doi.org/10.15587/1729-4061.2017.118984 [Google Scholar]
  31. V. Budashko, V. Nikolskyi, O. Onishchenko, S. Khniunin, Decision support system’s concept for design of combined propulsion complexes. East. Eur. J. Enter. 3 (8-81), 10–21 (2016). https://doi.org/10.15587/1729-4061.2016.72543 [Google Scholar]
  32. A. Alla, B. Natalia, B. Sergey, O. Svitlana, Modelling of creation organisational energy-entropy, in Proceedings of International Scientific and Technical Conference on Computer Sciences and Information Technologies 2, 9321997, 141–145 (2020). https://doi.org/10.1109/CSIT49958.2020.9321997 [Google Scholar]
  33. S. Bushuyev, V. Bushuieva, S. Onyshchenko, A. Bondar, Modeling the dynamics of information panic in society. COVID-19 case, in CEUR Workshop Proceedings 2864, 400–408 (2021). [Google Scholar]
  34. S. Onyshchenko, A. Bondar, V. Andrievska, N. Sudnyk, O. Lohinov, Constructing and exploring the model to form the road map of enterprise development. East. Eur. J. Enter. 5 (3-101), 33–42 (2019). https://doi.org/10.15587/1729-4061.2019.179185 [Google Scholar]
  35. S. Rudenko, A. Shakhov, I. Lapkina, O. Shumylo, M. Malaksiano, I. Horchynskyi, Multicriteria approach to determining the optimal composition of technical means in the design of sea grain terminals. Trans. Mar. Sci. 11 (1), 28–44 (2022). https://doi.org/10.7225/toms.v11.n01.003 [CrossRef] [Google Scholar]
  36. I. Lapkina, M. Malaksiano, Y. Savchenko, Design and optimization of maritime transport infrastructure projects based on simulation modeling methods. CEUR Workshop Proceedings 2565, 36–45 (2020). [Google Scholar]
  37. O. Melnyk, O. Onishchenko, S. Onyshchenko, Renewable energy concept development and application in shipping industry. Lex Portus 9 (6), 15–24 (2023). https://doi.org/10.26886/2524-101X.9.6.2023.2 [CrossRef] [Google Scholar]
  38. V.H. Duong, Natural resource underpricing in WTO subsidies rules and beyond: a reflection of north-south divide in globalization. Lex Portus 9 (2), 28–42 (2023). https://doi.org/10.26886/2524-101X.9.2.2023.3 [CrossRef] [Google Scholar]
  39. K. Yeremenko, International maritime organization and decarbonization of maritime industry: mandate and instruments. Lex Portus 8 (3), 30–57 (2022). https://doi.org/10.26886/2524-101X.8.3.2022.2 [CrossRef] [Google Scholar]
  40. I. Parsadanov, A. Marchenko, M. Tkachuk, S. Kravchenko, A. Polyvianchuk, A. Strokov, I.V. Gritsuk, I. Rykova, A. Savchenk, O. Smirnov, Y. Postol, V. Savchuk, Complex assessment of fuel efficiency and diesel exhaust toxicity. SAE Tech. Papers (2020). https://doi.org/10.4271/2020-01-2182 [Google Scholar]
  41. E. Belousov, A. Marchenko, I.V. Gritsuk, V. Savchuk, N. Bulgakov, V. Mitienkova, M. Ahieiev, O. Samarin, R. Vrublevskyi, M. Volodarets, Y. Kalashnikov, S. Pronin, Research of the gas fuel supply process on the compression stroke in ship’s low-speed gas-diesel engines. SAE Tech. Papers (2020). https://doi.org/10.4271/2020-01-2107 [Google Scholar]
  42. I. Vorokhobin, I. Burmaka, I. Fusar, O. Burmaka, Simulation modeling for evaluation of efficiency of observed ship coordinates. TransNav 16 (1), 137–141 (2022). https://doi.org/10.12716/1001.16.01.15 [CrossRef] [Google Scholar]
  43. I. Burmaka, M. Kulakov, Y. Khussein, O. Yanchetskyy, Methods of ships’ external steering in condition of close quarters situation in Transport Means − Proceedings of the International Conference, 2020 September, 753–756 (2020). [Google Scholar]
  44. V.V. Romanuke, A.Y. Romanov, M.O. Malaksiano, A genetic algorithm improvement by tour constraint violation penalty discount for maritime cargo delivery. System Res. Inf. Technol. 2, 104–126 (2023). https://doi.org/10.20535/SRIT.2308-8893.2023.2.08 [Google Scholar]
  45. S. Rudenko, T. Kovtun, T. Smokova, F. Iryna, The genetic approach application and creation of the project genetic model. Proceedings of the International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2022 November, 434–437 (2022). https://doi.org/10.1109/CSIT56902.2022.10000822 [Google Scholar]
  46. S. Rudenko, T. Kovtun, V. Smrkovska, Deviesing a method for managing the configuration of products within an eco-logistics system project. Eur. J. Enterp. Technol. 4 (3-118), 34–42 (2022). https://doi.org/10.15587/1729-4061.2022.261956 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.