Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 02011
Number of page(s) 9
Section Electric Drives and Vehicles
DOI https://doi.org/10.1051/e3sconf/202454002011
Published online 21 June 2024
  1. Sathre, R., Scown, C. D., Kavvada, O., & Hendrickson, T. P. (2015). Energy and climate effects of second-life use of electric vehicle batteries in California through 2050. Journal of Power Sources, 288, 82–91. [CrossRef] [Google Scholar]
  2. Lacey, G., Putrus, G., & Salim, A. (2013, July). The use of second life electric vehicle batteries for grid support. In Eurocon 2013 (pp. 1255–1261). IEEE. [CrossRef] [Google Scholar]
  3. Wu, W., Lin, B., Xie, C., Elliott, R. J., & Radcliffe, J. (2020). Does energy storage provide a profitable second life for electric vehicle batteries?. Energy Economics, 92, 105010 [CrossRef] [Google Scholar]
  4. Smith, B. (2014). Personal Communication. Nissan North America, Houston, TX. [Google Scholar]
  5. Yeh, A. G., & Chow, M. H. (1996). An integrated GIS and location-allocation approach to public facilities planning: An example of open space planning. Computers, Environment and Urban Systems, 20, 339–350. [CrossRef] [Google Scholar]
  6. Spiers, D. (2014). Personal Communication. ATC New Technologies, Oklahoma City, OK. [Google Scholar]
  7. Vidovic, M., Dimitrijevic, B., Ratkovic, B., & Simic, V. (2011). A novel covering approach to positioning ELV collection points. Resources, Conservation and Recycling, 57, 1–9. [CrossRef] [Google Scholar]
  8. Greenblatt, J. B. (2015). Modelling California policy impacts on greenhouse gas emissions. Energy Policy, 78, 158–172. [CrossRef] [Google Scholar]
  9. Saxena, S., Le Floch, C., MacDonald, J., & Moura, S. (2015). Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 282, 265–276. [CrossRef] [Google Scholar]
  10. Neubauer, J., & Pesaran, A. (2011). The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications. Journal of Power Sources, 196(23), 10351–10358. [CrossRef] [Google Scholar]
  11. M L B., Sripriya T., Muthuraj B., Kumar D.S., Venkatesh V., Sridevi B.S., Krishna M.M.S., Rajan K. & Diriba A. (2022), “Deep Learning-Based Smart Hybrid Solar Water Heater Erection Model to Extract Maximum Energy”,International Journal of Photoenergy. [Google Scholar]
  12. Marra, F., Træholt, C., Larsen, E., & Wu, Q. (2010, October). Average behavior of battery-electric vehicles for distributed energy studies. In 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe) (pp. 1–7). IEEE. [Google Scholar]
  13. NREL, http://www.nrel.gov/vehiclesandfuels/energystorage/ (accessed Aug 2012) [Google Scholar]
  14. http://www.mathworks.co.uk/products/simulink/ [Google Scholar]
  15. Lih, W. C., Yen, J. H., Shieh, F. H., & Liao, Y. M. (2012, June). Second use of retired lithium-ion battery packs from electric vehicles: technological challenges, cost analysis and optimal business model. In 2012 International Symposium on Computer, Consumer and Control (pp. 381–384). IEEE. [CrossRef] [Google Scholar]
  16. Lin, B., Wu, W., Bai, M., Xie, C., & Radcliffe, J. (2019). Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market. Energy Economics, 78, 647–655. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.