Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 02019
Number of page(s) 11
Section Electric Drives and Vehicles
DOI https://doi.org/10.1051/e3sconf/202454002019
Published online 21 June 2024
  1. Serrao, L., Onori, S., & Rizzoni, G. (2011). A comparative analysis of energy management strategies for hybrid electric vehicles. [Google Scholar]
  2. Ramadan, H. S., Becherif, M., & Claude, F. (2017). Energy management improvement of hybrid electric vehicles via combined GPS/rule-based methodology. IEEE Transactions on Automation Science and Engineering, 14(2), 586–597. [CrossRef] [Google Scholar]
  3. Lü, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P., & Meng, L. (2020). Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Conversion and Management, 205, 112474 [CrossRef] [Google Scholar]
  4. Geering, H. P. (2007). Optimal control with engineering applications (Vol. 113). Berlin: Springer. [Google Scholar]
  5. Gu, B., & Rizzoni, G. (2006, January). An adaptive algorithm for hybrid electric vehicle energy management based on driving pattern recognition. In ASME International Mechanical Engineering Congress and Exposition (Vol. 47683, pp. 249–258). [Google Scholar]
  6. Paganelli, G., Guerra, T. M., Delprat, S., Santin, J. J., Delhom, M., & Combes, E. (2000). Simulation and assessment of power control strategies for a parallel hybrid car. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214(7), 705–717. [CrossRef] [Google Scholar]
  7. Brahma, A., Guezennec, Y., & Rizzoni, G. (2000, June). Optimal energy management in series hybrid electric vehicles. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334) (Vol. 1, No. 6, pp. 60–64). IEEE. [Google Scholar]
  8. Cipollone, R., & Sciarretta, A. (2006, October). Analysis of the potential performance of a combined hybrid vehicle with optimal supervisory control. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control (pp. 2802–2807). IEEE. [Google Scholar]
  9. Souffran, G., Miègeville, L., & Guérin, P. (2012). Simulation of real-world vehicle missions using a stochastic Markov model for optimal powertrain sizing. IEEE transactions on vehicular technology, 61(8), 3454–3465. [CrossRef] [Google Scholar]
  10. Becherif, M., Péra, M. C., Hissel, D., & Jemei, S. (2012). Enhancement of the coulomb counter estimator by the on-board vehicle determination of battery initial state of charge. IFAC Proceedings Volumes, 45(21), 621–626. [CrossRef] [Google Scholar]
  11. Musardo, C., Rizzoni, G., Guezennec, Y., & Staccia, B. (2005). A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. European journal of control, 11(4–5), 509–524. [CrossRef] [Google Scholar]
  12. Hofman, T., Steinbuch, M., Van Druten, R., & Serrarens, A. (2007). Rule-based energy management strategies for hybrid vehicles. International Journal of Electric and Hybrid Vehicles, 1(1), 71–94. [CrossRef] [Google Scholar]
  13. Bajaj, A., & Sangwan, O. P. (2019). A systematic literature review of test case prioritization using genetic algorithms. IEEE Access, 7, 126355–126375. [CrossRef] [Google Scholar]
  14. Odeim, F., Roes, J., & Heinzel, A. (2015). Power management optimization of an experimental fuel cell/battery/supercapacitor hybrid system. Energies, 8(7), 6302–6327. [CrossRef] [Google Scholar]
  15. Zhang, Z., & Hu, C. (2014). System design and control strategy of the vehicles using hydrogen energy. International journal of hydrogen energy, 39(24), 12973–12979. [CrossRef] [Google Scholar]
  16. Ravey, A., Blunier, B., & Miraoui, A. (2012). Control strategies for fuel-cell-based hybrid electric vehicles: From offline to online and experimental results. IEEE transactions on vehicular technology, 61(6), 2452–2457. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.