Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 02024 | |
Number of page(s) | 12 | |
Section | Electric Drives and Vehicles | |
DOI | https://doi.org/10.1051/e3sconf/202454002024 | |
Published online | 21 June 2024 |
- J. Zhang, M. Lou, L. Xiang, L. Hu, “Power cognition: Enabling intelligent energy harvesting and resource allocation for solar-powered UAVs”, Future Generation Computer Systems, Vol. 110, pp.658–664, 2020, https://doi.org/10.1016/j.future.2019.05.068 [CrossRef] [Google Scholar]
- P. Oettershagen, et al., “Perpetual flight with a small solar-powered UAV: Flight results, performance analysis and model validation,” 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 2016, pp. 1–8, doi: 10.1109/AERO.2016.7500855. [Google Scholar]
- Jurj, S.L., Rotar, R., Opritoiu, F., Vladutiu, M. (2020). Efficient Implementation of a Self-sufficient Solar-Powered Real-Time Deep Learning-Based System. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_7 [Google Scholar]
- L. Brooke-Holland, in House of Commons Library, UK, 2012. [Google Scholar]
- A. Arjomandi, S. Agostino, M. Mammone, M. Nelson, T. Zhou, in Report for Mechanical Engineering Class, Adelaide, Australia 2006. [Google Scholar]
- R. E. Weibel, R. J. Hansman, in Proc. of the 4th Aviation Technology, Integration and Operations Forum, AIAA 3rd Unmanned Unlimited Technical Conf., Chicago, IL, USAn; Publisher: AIAA, 2004. [Google Scholar]
- A. Conn, S. Burgess, R. Hyde and C. S. Ling, “From Natural Flyers to the Mechanical Realization of a Flapping Wing Micro Air Vehicle,” 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006, pp. 439–444, doi: 10.1109/ROBIO.2006.340232. [Google Scholar]
- Xinyan Deng, L. Schenato, Wei Chung Wu and S. S. Sastry, “Flapping flight for biomimetic robotic insects: part I-system modeling,” in IEEE Transactions on Robotics, vol. 22, no. 4, pp. 776–788, Aug. 2006, doi: 10.1109/TRO.2006.875480. [CrossRef] [Google Scholar]
- Sibilski, K. (2004). Dynamics of Micro-Air-Vehicle with Flapping Wings. Acta Polytechnica, 44(2). https://doi.org/10.14311/526 [CrossRef] [Google Scholar]
- E. Ebeid, M. Skriver, K. Husum Terkildsen, K. Jensen, U. P. Schultz, “A survey of Open-Source UAV flight controllers and flight simulators”, Microprocessors and Microsystems, vol. 61, pp.11–20, 2018. https://doi.org/10.1016/j.micpro.2018.05.002 [CrossRef] [Google Scholar]
- H. M. Omar, R. Akram, S.M.S. Mukras, A. A. Mahvouz, “Recent advances and challenges in controlling quadrotors with suspended loads”, Alexandria Engineering Journal, Vol. 63, pp.253–270, 2023. https://doi.org/10.1016/j.aej.2022.08.001 [CrossRef] [Google Scholar]
- P. Medrano, J. Villadangos and J. J. Astrain, “UAS: IoT on-line sensors for power line inspection,” 2020 IEEE SENSORS, Rotterdam, Netherlands, 2020, pp. 1–4, doi: 10.1109/SENSORS47125.2020.9278883. [Google Scholar]
- N. Arsov, P. Kocmoud, L. Meier, D. Sidrane, L. Hall, Pixracer autopilot, https://pixhawk.org/modules/pixracer [Google Scholar]
- P.D. Team, Pixhawk 3 pro, https://docs.px4.io/en/flight_controller/pixhawk3_pro.html [Google Scholar]
- T. Labs, Sparky2, https://github.com/TauLabs/TauLabs/wiki/Sparky2 [Google Scholar]
- B. Balasubramaniam, H. Bagheri, S. Elbaum and J. Bradley, “Investigating Controller Evolution and Divergence through Mining and Mutation,” 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), Sydney, NSW, Australia, 2020, pp. 151–161, doi: 10.1109/ICCPS48487.2020.00022. [Google Scholar]
- L. community, CC3D web page, http://opwiki.readthedocs.io/en/latest/user_manual/cc3d/ [Google Scholar]
- A.M. Baldea, M. Garabet, V. Prisacariu “ MASIM and STEM approaches in the romanian school”, INTED 2017 Proceedings, pp. 6312–6319, 2017. [Google Scholar]
- DFRobot, Flymaple — a flight controller with 10 DOF IMU, https://www.dfrobot.com/product-739.html [Google Scholar]
- E.R.S. L., Erlerobotics web page, www.erlerobotics.com [Google Scholar]
- X. Xing, F. Sun, W. Qu, Y. Xin, H. Hong, “Numerical simulation and experimental study of a novel hybrid system coupling photovoltaic and solar fuel for electricity generation”, Energy Conversion and Management, Vol. 255, 115316, 2022. https://doi.org/10.1016/j.enconman.2022.115316 [CrossRef] [Google Scholar]
- Hobbs, A., & Herwitz, S. R. (2006). Human challenges in the maintenance of unmanned aircraft systems. FAA and NASA Report. [Google Scholar]
- C.S. Goh, J.R. Kuan, J.H. Yeo, B.S. Teo, A. Danner, “A fully solar-powered quadcopter able to achieve controlled flight out of the ground effect” Prog Photovolt Res Appl, 27 (2019), pp. 869–878, 10.1002/pip.3169 [CrossRef] [Google Scholar]
- A. Perez-Rosado, R.D. Gehlhar, S. Nolen, S.K. Gupta, H.A. Bruck, “Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles Smart Mater Struct”, 24 (2015), 10.1088/0964-1726/24/6/065042 [Google Scholar]
- A. Perez-Rosado, H.A. Bruck, S.K. Gupta, “Integrating Solar Cells Into Flapping Wing Air Vehicles for Enhanced Flight Endurance”, J Mech Robot, 8 (2016), https://doi.org/10.1115/1.4032411 [CrossRef] [Google Scholar]
- A.E. Holness, H. Solheim, H.A. Bruck, S.K. Gupta, “A design framework for realizing multifunctional wings for flapping wing air vehicles using solar cells”, Int J Micro Air Veh, 11 (2019), https://doi.org/10.1177/1756829319836279 [Google Scholar]
- M. ElSayed, A. Foda, M. Mohamed, “Autonomous drone charging station planning through solar energy harnessing for zero-emission operations”, Sustainable Cities and Society, Vol. 86, 104122, 2022. https://doi.org/10.1016/j.scs.2022.104122 [CrossRef] [Google Scholar]
- V. Kouhdaragh, F. Verde, G. Gelli, and J. Abouei, “On the Application of Machine Learning to the Design of UAV-Based 5G Radio Access Networks,” Electronics, vol. 9, no. 4, p. 689, Apr. 2020, doi: 10.3390/electronics9040689 [CrossRef] [Google Scholar]
- X. Liu, Y. Liu and Y. Chen, “Machine Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Wireless Networks,” in IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2042–2055, July 2021, doi: 10.1109/JSAC.2020.3041401. [CrossRef] [Google Scholar]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. https://doi.org/10.3390/rs70404026 [CrossRef] [Google Scholar]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. https://doi.org/10.3390/rs70404026 [CrossRef] [Google Scholar]
- Tanzi, T. J., Chandra, M., Isnard, J., Camara, D., Sebastien, O., & Harivelo, F. (2016, July). Towards” drone-borne” disaster management: future application scenarios. In XXIII ISPRS Congress, Commission VIII (Volume III-8) (Vol. 3, pp. 181–189). Copernicus GmbH. [Google Scholar]
- Marinho, M. A., de Freitas, E. P., da Costa, J. P. C. L., de Almeida, A. L. F., & de Sousa, R. T. (2013, January). Using cooperative MIMO techniques and UAV relay networks to support connectivity in sparse Wireless Sensor Networks. In 2013 International conference on computing, management and telecommunications (ComManTel) (pp. 49–54). IEEE. [CrossRef] [Google Scholar]
- Linchant, J., Lisein, J., Semeki, J., Lejeune, P., & Vermeulen, C. (2015). Are unmanned aircraft systems (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Review, 45(4), 239–252. [CrossRef] [Google Scholar]
- Satoshi, O., Ohara, K., Ikeda, T., Ichikawa, A., Asizawa, S., Oomichi, T., & Fukuda, T. (2017, December). Light weight manipulator on UAV system for infrastructure inspection. In 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS) (pp. 1–3). IEEE. [Google Scholar]
- Ramadhani, S. A., Bennett, R. M., & Nex, F. C. (2018). Exploring UAV in Indonesian cadastral boundary data acquisition. Earth science informatics, 11, 129–146. [CrossRef] [Google Scholar]
- Ruetten, L., Regis, P. A., Feil-Seifer, D., & Sengupta, S. (2020, January). Areaoptimized UAV swarm network for search and rescue operations. In 2020 10th annual computing and communication workshop and conference (CCWC) (pp. 0613–0618). [Google Scholar]
- Hashesh, A. O., Hashima, S., Zaki, R. M., Fouda, M. M., Hatano, K., & Eldien, A. S. T. (2022). AI-enabled UAV communications: Challenges and future directions. IEEE Access, 10, 92048–92066. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.