Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 04007
Number of page(s) 7
Section Solar Energy Conversion and PV Developments
DOI https://doi.org/10.1051/e3sconf/202454004007
Published online 21 June 2024
  1. Luo, X., Zhang, D., & Zhu, X. (2021). Deep learning-based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy, 225, 120240 [CrossRef] [Google Scholar]
  2. Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., Saadane, R., Chebak, A., & Chehri, A. (2023). Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Reports, 10, 1004–1012. [CrossRef] [Google Scholar]
  3. Von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R.,... & Schuecker, J. (2021). Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, 35(1), 614–633. [Google Scholar]
  4. Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Van Deventer, W.,... & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912–928. [CrossRef] [Google Scholar]
  5. Strzalka, A., Alam, N., Duminil, E., Coors, V., & Eicker, U. (2012). Large scale integration of photovoltaics in cities. Applied Energy, 93, 413–421. [CrossRef] [Google Scholar]
  6. Abuella, M., & Chowdhury, B. (2015, October). Solar power forecasting using artificial neural networks. In 2015 North American Power Symposium (NAPS) (pp. 1–5). IEEE. [Google Scholar]
  7. Müller, K. R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997, October). Predicting time series with support vector machines. In International conference on artificial neural networks (pp. 999–1004). Berlin, Heidelberg: Springer Berlin Heidelberg. [Google Scholar]
  8. Tang, P., Chen, D., & Hou, Y. (2016). Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting. Chaos, Solitons & Fractals, 89, 243–248. [CrossRef] [Google Scholar]
  9. Gensler, A., Henze, J., Sick, B., & Raabe, N. (2016, October). Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks. In 2016 IEEE international conference on systems, man, and cybernetics (SMC) (pp. 002858–002865). IEEE. [Google Scholar]
  10. Lucchi, E., Adami, J., Peluchetti, A., & Zambrano, J. C. M. (2023). Photovoltaic potential estimation of natural and architectural sensitive land areas to balance heritage protection and energy production. Energy and Buildings, 290, 113107 [CrossRef] [Google Scholar]
  11. El Maghraoui, A., Ledmaoui, Y., Laayati, O., El Hadraoui, H., & Chebak, A. (2022). Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine. Energies, 15(13), 4569 [CrossRef] [Google Scholar]
  12. Rahman, M. M., Shakeri, M., Tiong, S. K., Khatun, F., Amin, N., Pasupuleti, J., & Hasan, M. K. (2021). Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks. Sustainability, 13(4), 2393 [CrossRef] [Google Scholar]
  13. Geetha, A., Santhakumar, J., Sundaram, K. M., Usha, S., Thentral, T. T., Boopathi, C. S.,... & Sathyamurthy, R. (2022). Prediction of hourly solar radiation in Tamil Nadu using ANN model with different learning algorithms. Energy Reports, 8, 664–671. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.