Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 07001
Number of page(s) 9
Section Electricity Market
DOI https://doi.org/10.1051/e3sconf/202454007001
Published online 21 June 2024
  1. Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834 [CrossRef] [Google Scholar]
  2. Wan, J., Li, X., Dai, H. N., Kusiak, A., Martinez-Garcia, M., & Li, D. (2020). Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proceedings of the IEEE, 109(4), 377–398. [Google Scholar]
  3. Danish, M. S. S. (2023). AI in Energy: Overcoming Unforeseen Obstacles. AI, 4(2), 406–425. [CrossRef] [Google Scholar]
  4. Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. Is your business ready for artificial intelligence? Jt. BCG-MIT sloanmanag. Rev. Surv. impact Artif. Intell. Bus.(2017). [Google Scholar]
  5. Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review, 59(1). [Google Scholar]
  6. Gerbert, P., Reeves, M., Steinhäuser, S., & Ruwolt, P. (2017). Is Your Business Ready for Artificial Intelligence?. Accessed, 6, 2020 [Google Scholar]
  7. Nguyen, T. L. (2018, December). A framework for five big v’s of big data and organizational culture in firms. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 5411–5413). IEEE. [CrossRef] [Google Scholar]
  8. Elsevier. (2018). Artifical Intelligence: How Knowledge is Created, Transferred, and Used. Elsevier. [Google Scholar]
  9. Gopinath S., Suresh Kumar N., Madhumitha S & Natraj N.A. (2020), “TSRP: A trust based secure routing protocol for authentication and load balancing in MANET”, International Journal of Advanced Science and Technology, 29(1). [Google Scholar]
  10. Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039–2047. [CrossRef] [Google Scholar]
  11. Wang, T., Guo, S., & Lee, C. G. (2014). Manufacturing task semantic modeling and description in cloud manufacturing system. The International Journal of Advanced Manufacturing Technology, 71, 2017–2031. [CrossRef] [Google Scholar]
  12. Valente, A. (2016). Reconfigurable industrial robots—An integrated approach to design the joint and link modules and configure the robot manipulator. In Advances in Reconfigurable Mechanisms and Robots II (pp. 779–794). Springer International Publishing. [Google Scholar]
  13. Harrison, R., Vera, D., & Ahmad, B. (2021). Towards the realization of dynamically adaptable manufacturing automation systems. Philosophical Transactions of the Royal Society A, 379(2207), 20200365 [CrossRef] [PubMed] [Google Scholar]
  14. Ghobakhloo, M., Iranmanesh, M., Morales, M. E., Nilashi, M., & Amran, A. (2023). Actions and approaches for enabling Industry 5.0-driven sustainable industrial transformation: A strategy roadmap. Corporate Social Responsibility and Environmental Management, 30(3), 1473–1494. [CrossRef] [Google Scholar]
  15. Samuel, O., Javaid, N., Khalid, A., Khan, W. Z., Aalsalem, M. Y., Afzal, M. K., & Kim, B. S. (2020). Towards real-time energy management of multi-microgrid using a deep convolution neural network and cooperative game approach. IEEE access, 8, 161377–161395. [CrossRef] [Google Scholar]
  16. Preetha M., Anil Kumar N., Elavarasi K., Vignesh T., & Nagaraju V., (2022) “A Hybrid Clustering Approach Based Q-Leach in TDMA to Optimize QOSparameters”, Wireless Personal Communications, 123(2). [Google Scholar]
  17. Danish, M. S. S., Senjyu, T., Zaheb, H., Sabory, N. R., Ibrahimi, A. M., & Matayoshi, H. (2019). A novel transdisciplinary paradigm for municipal solid waste to energy. Journal of Cleaner Production, 233, 880–892. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.