Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 08002
Number of page(s) 8
Section Energy Management System
DOI https://doi.org/10.1051/e3sconf/202454008002
Published online 21 June 2024
  1. Alanne, K., & Sierla, S. (2022). An overview of machine learning applications for smart buildings. Sustainable Cities and Society, 76, 103445 [CrossRef] [Google Scholar]
  2. Huseien, G. F., & Shah, K. W. (2022). A review on 5G technology for smart energy management and smart buildings in Singapore. Energy and AI, 7, 100116 [CrossRef] [Google Scholar]
  3. Bourhnane, S., Abid, M. R., Lghoul, R., Zine-Dine, K., Elkamoun, N., & Benhaddou, D. (2020). Machine learning for energy consumption prediction and scheduling in smart buildings. SN Applied Sciences, 2, 1–10. [CrossRef] [Google Scholar]
  4. Aguilar, J., Garces-Jimenez, A., R-moreno, M. D., & García, R. (2021). A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings. Renewable and Sustainable Energy Reviews, 151, 111530 [CrossRef] [Google Scholar]
  5. Gruyer, D., Magnier, V., Hamdi, K., Claussmann, L., Orfila, O., & Rakotonirainy, A. (2017). Perception, information processing and modeling: Critical stages for autonomous driving applications. Annual Reviews in Control, 44, 323–341. [CrossRef] [Google Scholar]
  6. Wang, Z., & Hong, T. (2020). Reinforcement learning for building controls: The opportunities and challenges. Applied Energy, 269, 115036 [CrossRef] [Google Scholar]
  7. Perera, A. T. D., & Kamalaruban, P. (2021). Applications of reinforcement learning in energy systems. Renewable and Sustainable Energy Reviews, 137, 110618 [CrossRef] [Google Scholar]
  8. Jia, M., Komeily, A., Wang, Y., & Srinivasan, R. S. (2019). Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction, 101, 111–126. [CrossRef] [Google Scholar]
  9. Senthilkumar, K K., Seshasayanan, R., (2014) “ Power Reduction in DCT Implementation using Comparative Input Method”, International Information Institute (Tokyo). Information, 17(12), 6619–6641 [Google Scholar]
  10. Dhaya R., Ujwal U.J., Sharma T., Singh P., Kanthavel R., Selvan S & Krah D., (2022), “Energy-Efficient Resource Allocation and Migration in Private Cloud Data Centre”,Wireless Communications and Mobile Computing. [Google Scholar]
  11. Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2020). Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications, 166, 102693 [CrossRef] [Google Scholar]
  12. Garcia, C. G., Núñez-Valdez, E., & García-Díaz, V. (2019). G-Bustelo, CP; Cueva-Lovelle, JM A Review of Artificial Intelligence in the Internet of Things. Int. J. Interact. Multimedia Artif. Intell, 5, 9–20. [Google Scholar]
  13. Daissaoui, A., Boulmakoul, A., Karim, L., & Lbath, A. (2020). IoT and big data analytics for smart buildings: A survey. Procedia computer science, 170, 161–168. [CrossRef] [Google Scholar]
  14. Minoli, D., Sohraby, K., & Occhiogrosso, B. (2017). IoT considerations, requirements, and architectures for smart buildings—Energy optimization and next-generation building management systems. IEEE Internet of Things Journal, 4(1), 269–283. [CrossRef] [Google Scholar]
  15. Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2016). Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Transactions on Smart Grid, 9(2), 530–543. [Google Scholar]
  16. Amasyali, K., & El-Gohary, N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192–1205. [CrossRef] [Google Scholar]
  17. Wang Y., Rajesh G., Mercilin Raajini X., Kritika N., Kavinkumar A., Shah S.B.H., “Machine learning-based ship detection and tracking using satellite images for maritime surveillance”, Journal of Ambient Intelligence and Smart Environments, 13(5), 2021 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.