Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 08007
Number of page(s) 7
Section Energy Management System
DOI https://doi.org/10.1051/e3sconf/202454008007
Published online 21 June 2024
  1. Ożadowicz, A., Grela, J. Energy saving in the street lighting control system—a new approach based on the EN-15232 standard. Energy Efficiency 10, 563–576 (2017). https://doi.org/10.1007/s12053-016-9476-1 [Google Scholar]
  2. Elejoste P, Angulo I, Perallos A, Chertudi A, Zuazola IJG, Moreno A, Azpilicueta L, Astrain JJ, Falcone F, Villadangos J. An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology. Sensors. 2013; 13(5):6492–6523. https://doi.org/10.3390/s130506492 [CrossRef] [Google Scholar]
  3. W. Li, T. Logenthiran, V. Phan and W. L. Woo, “Implemented IoT-Based Self-Learning Home Management System (SHMS) for Singapore,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2212–2219, 2018.https://doi.org/10.1109/JIOT.2018.2828144 [CrossRef] [Google Scholar]
  4. Alzoubi, A. (2022). Machine learning for intelligent energy consumption in smart homes. International Journal of Computations, Information and Manufacturing (IJCIM), 2(1).https://doi.org/10.54489/ijcim.v2i1.75 [Google Scholar]
  5. Machorro-Cano I, Alor-Hernández G, Paredes-Valverde MA, Rodríguez-Mazahua L, Sánchez-Cervantes JL, Olmedo-Aguirre JO. HEMS-IoT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving. Energies. 2020;13(5):1097. https://doi.org/10.3390/en13051097 [Google Scholar]
  6. Y. Liu, D. Zhang and H. B. Gooi, “Optimization strategy based on deep reinforcement learning for home energy management,” CSEE Journal of Power and Energy Systems, vol. 6, no. 3, pp. 572–582, 2020 https://doi.org/10.17775/CSEEJPES.2019.02890 [Google Scholar]
  7. Syamala, M., Komala, C. R., Pramila, P. V., Dash, S., Meenakshi, S., & Boopathi, S. (2023). Machine Learning-Integrated IoT-Based Smart Home Energy Management System. In Handbook of Research on Deep Learning Techniques for Cloud-Based Industrial IoT (pp. 219–235). IGI Global DOI:10.4018/978-1-6684-8098-4.ch013 [Google Scholar]
  8. Tanwar, S., Bhatia, et al. “Machine learning adoption in blockchain-based smart applications: The challenges, and a way forward”. IEEE Access, 8, 474 2018 https://doi.org/10.1109/ACCESS.2019.2961372 [Google Scholar]
  9. Wang, Y., Chen, Q., Hong, T., & Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Transactions on Smart Grid, 10(3), 3125–3148,2018. https://doi.org/10.1109/TSG.2018.2818167 [Google Scholar]
  10. Ying, X. (2019, February). An overview of overfitting and its solutions. In Journal of physics: Conference series (Vol. 1168, p. 022022). IOP Publishing. DOI 10.1088/1742-6596/1168/2/022022 [Google Scholar]
  11. Udendhran R., Sasikala R., Nishanthi R., Vasanthi J., (2023), “Smart Energy Consumption Control in Commercial Buildings Using Machine Learning and IOT”, E3S Web of Conferences, Vol. 387. doi:10.1051/e3sconf/202338702003 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Joy Kiruba P., Ahila R., Biruntha M., Kalpana R., (2023), “A Smart Energy Management System for Residential Buildings Using IoT and Machine Learning”, E3S Web of Conferences, Vol. 387. doi:10.1051/e3sconf/202338704009 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Indira G., Uma Maheswara Rao T., Chandramohan S., (2015), “Enhancing the design of a superconducting coil for magnetic energy storage systems”, Physica C: Superconductivity and its Applications, Vol. 508, no.,pp.69–74. doi:10.1016/j.physc.2014.11.005 [CrossRef] [Google Scholar]
  14. Balaji V., Sekar K., Duraisamy V., Uma S., Raghavendran T.S., (2015), “Performance analysis of energy management controller for stand alone solar power generation system using soft computing techniques”, Jurnal Teknologi, Vol. 76, no. 12, pp.111–117. doi:10.11113/jt.v76.5889 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.