Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 08009
Number of page(s) 8
Section Energy Management System
DOI https://doi.org/10.1051/e3sconf/202454008009
Published online 21 June 2024
  1. S. Azad, F. Sabrina and S. Wasimi, “Transformation of Smart Grid using Machine Learning,” 2019 29th Australasian Universities Power Engineering Conference (AUPEC), Nadi, Fiji, 2019, pp. 1–6, doi: 10.1109/AUPEC48547.2019.211809. [Google Scholar]
  2. X. Fang, S. Misra, G. Xue and D. Yang, “Smart grid—The new and improved power grid: A survey”, IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 944–980, 2011. [Google Scholar]
  3. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Massachusetts: The MIT Press. [Google Scholar]
  4. X. Song, H. Wang and L. Wang, “FPGA Implementation of a Support Vector Machine Based Classification System and Its Potential Application in Smart Grid,” 2014 11th International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 2014, pp. 397–402, doi: 10.1109/ITNG.2014.45. [Google Scholar]
  5. P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, “An Anomaly-Based Intrusion Detection System for the Smart Grid Based on CART Decision Tree,” 2018 Global Information Infrastructure and Networking Symposium (GIIS), Thessaloniki, Greece, 2018, pp. 1–5, doi: 10.1109/GIIS.2018.8635743. [Google Scholar]
  6. C. Dong, et al., “Forecasting Smart Meter Energy Usage Using Distributed Systems and Machine Learning,” 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 2018, pp. 1293–1298, doi: 10.1109/HPCC/SmartCity/DSS.2018.00216. [Google Scholar]
  7. R. Lu, S. H. Hong, “Incentive-based demand response for smart grid with reinforcement learning and deep neural network”, Applied Energy, Vol. 236, 2019, Pp. 937–949, https://doi.org/10.1016/j.apenergy.2018.12.061 [CrossRef] [Google Scholar]
  8. Reddy V.S.K., Saravanan T., Velusudha N.T., Selwyn T.S., (2023), “Smart Grid Management System Based on Machine Learning Algorithms for Efficient Energy Distribution”, E3S Web of Conferences, Vol. 387. doi:10.1051/e3sconf/202338702005 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Brearley B.J., Bose K.R., Senthil K., Ayyappan G., (2022), “KNN APPROACHES BY USING BALL TREE SEARCHING ALGORITHM WITH MINKOWSKI DISTANCE FUNCTION ON SMART GRID DATA”, Indian Journal of Computer Science and Engineering, Vol. 13, no. 4, pp.1210–1226. doi:10.21817/indjcse/2022/v13i4/221304179 [CrossRef] [Google Scholar]
  10. Prasad A.R., Dinesh Kumar S.K., Banu T.V., Vignesh T., Aatthisugan I., (2019), “Synthesis and thermal energy storage analysis of copper oxide nano fluid for heat transfer applications”, International Journal of Innovative Technology and Exploring Engineering, Vol. 8, no. 11, pp.3616–3619.doi:10.35940/ijitee.K2472.0981119 [CrossRef] [Google Scholar]
  11. Kumar N., Sundaram K., Reena R., Madhumathi S., (2023), “Optimizing Energy Consumption in Smart Homes Using Machine Learning Techniques”, E3S Web of Conferences, Vol. 387. doi:10.1051/e3sconf/202338702002 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.