Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 10013 | |
Number of page(s) | 8 | |
Section | Grid Connected Systems | |
DOI | https://doi.org/10.1051/e3sconf/202454010013 | |
Published online | 21 June 2024 |
- Aderibole, A., Aljarwan, A., Rehman, M. H. U., Zeineldin, H. H., Mezher, T., Salah, K.,... &Svetinovic, D. (2020). Blockchain technology for smart grids: Decentralized NIST conceptual model. IEEE Access, 8, 43177–43190. [CrossRef] [Google Scholar]
- Appasani, B., Mishra, S. K., Jha, A. V., Mishra, S. K., Enescu, F. M., Sorlei, I. S.,... & Bizon, N. (2022). Blockchain-enabled smart grid applications: Architecture, challenges, and solutions. Sustainability, 14(14), 8801 [CrossRef] [Google Scholar]
- Lim, M. K., Li, Y., Wang, C., & Tseng, M. L. (2021). A literature review of blockchain technology applications in supply chains: A comprehensive analysis of themes, methodologies and industries. Computers & industrial engineering, 154, 107133 [CrossRef] [Google Scholar]
- Meng, T., Zhao, Y., Wolter, K., & Xu, C. Z. (2021). On consortium blockchain consistency: A queueing network model approach. IEEE Transactions on Parallel and Distributed Systems, 32(6), 1369–1382. [CrossRef] [Google Scholar]
- Yapa, C., De Alwis, C., Liyanage, M., & Ekanayake, J. (2021). Survey on blockchain for future smart grids: Technical aspects, applications, integration challenges and future research. Energy Reports, 7, 6530–6564. [CrossRef] [Google Scholar]
- Xu, C., Wu, H., Liu, H., Li, X., Liu, L., & Wang, P. (2021). An intelligent scheduling access privacy protection model of electric vehicle based on 5G-V2X. Scientific Programming, 2021, 1–11. [Google Scholar]
- Sadiq, A., Javed, M. U., Khalid, R., Almogren, A., Shafiq, M., & Javaid, N. (2020). Blockchain based data and energy trading in internet of electric vehicles. IEEE Access, 9, 7000–7020. [Google Scholar]
- Wang, Q., Li, R., & Zhan, L. (2021). Blockchain technology in the energy sector: From basic research to real world applications. Computer Science Review, 39, 100362 [CrossRef] [Google Scholar]
- Wang, Y. (2018). An adaptive importance sampling method for spinning reserve risk evaluation of generating systems incorporating virtual power plants. IEEE Transactions on Power Systems, 33(5), 5082–5091. [CrossRef] [Google Scholar]
- Bagchi, A., Goel, L., & Wang, P. (2018). Adequacy assessment of generating systems incorporating storage integrated virtual power plants. IEEE Transactions on Smart Grid, 10(3), 3440–3451. [Google Scholar]
- Brearley B.J., Bose K.R., Senthil K. & Ayyappan G. (2022), “KNN approaches by using ball tree searching algorithm with minkowski distance function on smart grid data”, Indian Journal of Computer Science and Engineering, 13(4). [Google Scholar]
- Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science-Research and Development, 33, 207–214. [CrossRef] [Google Scholar]
- Schusser, S., & Jaraitė, J. (2018). Explaining the interplay of three markets: Green certificates, carbon emissions and electricity. Energy Economics, 71, 1–13. [CrossRef] [Google Scholar]
- Sandeep Kumar Reddy, Saravanan T., N.T. Velusudha, & T. Sunder Selwyn, (2023), “Smart Grid Management System Based on Machine Learning Algorithms for Efficient Energy Distribution”,E3S Web Conf. 387 02005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.