Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 10023 | |
Number of page(s) | 9 | |
Section | Grid Connected Systems | |
DOI | https://doi.org/10.1051/e3sconf/202454010023 | |
Published online | 21 June 2024 |
- Liu, Y., Guan, X., Li, J., Sun, D., Ohtsuki, T., Hassan, M. M., & Alelaiwi, A. (2020). Evaluating smart grid renewable energy accommodation capability with uncertain generation using deep reinforcement learning. Future Generation Computer Systems, 110, 647–657. [CrossRef] [Google Scholar]
- Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128 [CrossRef] [Google Scholar]
- Bird, L., Lew, D., Milligan, M., Carlini, E. M., Estanqueiro, A., Flynn, D.,... & Miller, J. (2016). Wind and solar energy curtailment: A review of international experience. Renewable and Sustainable Energy Reviews, 65, 577–586. [CrossRef] [Google Scholar]
- Novacheck, J., & Johnson, J. X. (2017). Diversifying wind power in real power systems. Renewable Energy, 106, 177–185. Huang, Y., Lan, H., Hong, Y. Y., Wen, S., & Yin, H. (2019). Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads. Energy, 181, 897–907. [CrossRef] [Google Scholar]
- Ohunakin, O. S., & Akinnawonu, O. O. (2012). Assessment of wind energy potential and the economics of wind power generation in Jos, Plateau State, Nigeria. Energy for sustainable Development, 16(1), 78–83. [CrossRef] [Google Scholar]
- Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Santos, C. S. (2014). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Applied Energy, 117, 116–126. [CrossRef] [Google Scholar]
- NREL, M. (2017). Measurement and instrumentation data center (MIDC) of NREL. [Google Scholar]
- OpenEI, https://openei.org/wiki/Main_Page [Google Scholar]
- McCollum, D. L. (2021). Machine learning for energy projections. Nature Energy, 6(2), 121–122. [CrossRef] [Google Scholar]
- Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics, 81, 709–727. [CrossRef] [Google Scholar]
- Wang, Y., Liu, J., & Han, Y. (2020). Production capacity prediction of hydropower industries for energy optimization: Evidence based on novel extreme learning machine integrating Monte Carlo. Journal of Cleaner Production, 272, 122824 [CrossRef] [Google Scholar]
- De Luna, P., Wei, J., Bengio, Y., Aspuru-Guzik, A., & Sargent, E. (2017). Use machine learning to find energy materials. Nature, 552(7683), 23–27. [CrossRef] [PubMed] [Google Scholar]
- Nižetić, S., Šolić, P., Gonzalez-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877 [CrossRef] [PubMed] [Google Scholar]
- Feng, C., Wang, Y., Chen, Q., Ding, Y., Strbac, G., & Kang, C. (2021). Smart grid encounters edge computing: Opportunities and applications. Advances in Applied Energy, 1, 100006 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.