Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 10035
Number of page(s) 9
Section Grid Connected Systems
DOI https://doi.org/10.1051/e3sconf/202454010035
Published online 21 June 2024
  1. K. Park, J. Lee, A. K. Das and Y. Park, “BPPS:Blockchain-Enabled Privacy-Preserving Scheme for Demand-Response Management in Smart Grid Environments,” in IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 2, pp. 1719–1729, 1 March-April 2023, doi: 10.1109/TDSC.2022.3163138. [CrossRef] [Google Scholar]
  2. B. Bera, S. Saha, A. K. Das and A. V. Vasilakos, “Designing Blockchain-Based Access Control Protocol in IoT-Enabled Smart-Grid System,” in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5744–5761, 1 April1, 2021, doi: 10.1109/JIOT.2020.3030308. [CrossRef] [Google Scholar]
  3. K. Kaur, G. Kaddoum and S. Zeadally, “Blockchain-Based Cyber-Physical Security for Electrical Vehicle Aided Smart Grid Ecosystem,” in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5178–5189, Aug. 2021, doi: 10.1109/TITS.2021.3068092. [CrossRef] [Google Scholar]
  4. J. Wang, L. Wu, K. -K. R. Choo and D. He, “Blockchain-Based Anonymous Authentication With Key Management for Smart Grid Edge Computing Infrastructure,” in IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1984–1992, March 2020, doi: 10.1109/TII.2019.2936278. [CrossRef] [Google Scholar]
  5. W. Lu, Z. Ren, J. Xu and S. Chen, “Edge Blockchain Assisted Lightweight Privacy-Preserving Data Aggregation for Smart Grid,” in IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1246–1259, June 2021, doi: 10.1109/TNSM.2020.3048822. [CrossRef] [Google Scholar]
  6. X. Hao, W. Ren, K. -K. R. Choo and N. N. Xiong, “A Self-Trading and Authenticated Roaming Scheme Based on Blockchain for Smart Grids,” in IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4097–4106, June 2022, doi: 10.1109/TII.2021.3119963. [CrossRef] [Google Scholar]
  7. Z. Zeng, M. Dong, W. Miao, M. Zhang and H. Tang, “A Data-Driven Approach for Blockchain-Based Smart Grid System,” in IEEE Access, vol. 9, pp. 70061–70070, 2021, doi: 10.1109/ACCESS.2021.3076746. [CrossRef] [Google Scholar]
  8. U. Khalil, Mueen-Uddin, O. A. Malik and S. Hussain, “A Blockchain Footprint for Authentication of IoT-Enabled Smart Devices in Smart Cities: State-of-the-Art Advancements, Challenges and Future Research Directions,” in IEEE Access, vol. 10, pp. 76805–76823, 2022, doi: 10.1109/ACCESS.2022.3189998. [CrossRef] [Google Scholar]
  9. K. Gai, Y. Wu, L. Zhu, L. Xu and Y. Zhang, “Permissioned Blockchain and Edge Computing Empowered Privacy-Preserving Smart Grid Networks,” in IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7992–8004, Oct. 2019, doi: 10.1109/JIOT.2019.2904303. [CrossRef] [Google Scholar]
  10. Z. Guan, X. Zhou, P. Liu, L. Wu and W. Yang, “A Blockchain-Based Dual-Side Privacy-Preserving Multiparty Computation Scheme for Edge-Enabled Smart Grid,” in IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14287–14299, 15 Aug.15, 2022, doi: 10.1109/JIOT.2021.3061107. [CrossRef] [Google Scholar]
  11. Y. Lu, X. Tang, L. Liu, F. R. Yu and S. Dustdar, “Speeding at the Edge: An Efficient and Secure Redactable Blockchain for IoT-Based Smart Grid Systems,” in IEEE Internet of Things Journal, vol. 10, no. 14, pp. 12886–12897, 15 July15, 2023, doi: 10.1109/JIOT.2023.3253601. [CrossRef] [Google Scholar]
  12. C. -D. Lee, J. -H. Li and T. -H. Chen, “A Blockchain-Enabled Authentication and Conserved Data Aggregation Scheme for Secure Smart Grids,” in IEEE Access, vol. 11, pp. 85202–85213, 2023, doi: 10.1109/ACCESS.2023.3301570. [CrossRef] [Google Scholar]
  13. H. Bao, B. Ren, B. Li and Q. Kong, “BBNP: A Blockchain-Based Novel Paradigm for Fair and Secure Smart Grid Communications,” in IEEE Internet of Things Journal, vol. 9, no. 15, pp. 12984–12996, 1 Aug.1, 2022, doi: 10.1109/JIOT.2021.3107301. [CrossRef] [Google Scholar]
  14. M. Fan and X. Zhang, “Consortium Blockchain Based Data Aggregation and Regulation Mechanism for Smart Grid,” in IEEE Access, vol. 7, pp. 35929–35940, 2019, doi: 10.1109/ACCESS.2019.2905298. [CrossRef] [Google Scholar]
  15. Bharathi, C., & Rekha, D. (2023). Load Forecasting for Demand Side Management in Smart Grid using Non-Linear Machine Learning Technique. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 200–214. [CrossRef] [Google Scholar]
  16. Ndife, A. N., Mensin, Y., Rakwichian, W., & Muneesawang, P. (2022). Cyber-Security Audit for Smart Grid Networks: An Optimized Detection Technique Based on Bayesian Deep Learning. Journal of Internet Services and Information Security, 12(2), 95–114. [Google Scholar]
  17. Kavitha R., et.al A training on data security in cloud computing employing effusively homomorphic encryption techniques, Eurasian Journal of Analytical Chemistry, V-13, I-3, PP:975–981, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.