Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 13004
Number of page(s) 12
Section Other Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202454013004
Published online 21 June 2024
  1. UN, The Sustainable Development Goals Report 2023: Special edition. https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf [Google Scholar]
  2. Ouyang, Z., Sciusco, P., Jiao, T. et al. Albedo changes caused by future urbanization contribute to global warming. Nat Commun 13, 3800 (2022). https://doi.org/10.1038/s41467-022-31558-z [Google Scholar]
  3. Assam Institute of Research for Tribals and Scheduled Castes, Annual Administrative Report, 2014–2015. https://wptbc.assam.gov.in/documents-detail/annual-report-0 [Google Scholar]
  4. Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and sustainable energy reviews, 4(2), 157–175. https://doi.org/10.1016/S1364-0321(99)00011-8 [CrossRef] [Google Scholar]
  5. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990 https://doi.org/10.1080/23311916.2016.1167990 [CrossRef] [Google Scholar]
  6. Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111 https://doi.org/10.1016/j.rser.2022.112111 [CrossRef] [Google Scholar]
  7. Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment, 822, 153645 https://doi.org/10.1016/j.scitotenv.2022.153645 [CrossRef] [Google Scholar]
  8. Asif, M.H., Zhongfu, T., Ahmad, B. et al. Influencing factors of consumers’ buying intention of solar energy: a structural equation modeling approach. Environ Sci Pollut Res 30, 30017–30032 (2023). https://doi.org/10.1007/s11356-022-24286-w [Google Scholar]
  9. Schulte, E., Scheller, F., Sloot, D., & Bruckner, T. (2022). A meta-analysis of residential PV adoption: The important role of perceived benefits, intentions and antecedents in solar energy acceptance. Energy Research & Social Science, 84, 102339 https://doi.org/10.1016/j.erss.2021.102339 [CrossRef] [Google Scholar]
  10. Zhao, W., Liu, Y., & Huang, L. (2022). Estimating environmental Kuznets Curve in the presence of eco-innovation and solar energy: an analysis of G-7 economies. Renewable Energy, 189, 304–314. https://doi.org/10.1016/j.renene.2022.02.120 [CrossRef] [Google Scholar]
  11. Dehler-Holland, J., Okoh, M., & Keles, D. (2022). Assessing technology legitimacy with topic models and sentiment analysis–The case of wind power in Germany. Technological Forecasting and Social Change, 175, 121354 https://doi.org/10.1016/j.techfore.2021.121354 [CrossRef] [Google Scholar]
  12. Msigwa, G., Ighalo, J. O., & Yap, P. S. (2022). Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives. Science of The Total Environment, 849, 157755 https://doi.org/10.1016/j.scitotenv.2022.157755 [CrossRef] [Google Scholar]
  13. Jaen-Cuellar, A. Y., Elvira-Ortiz, D. A., Osornio-Rios, R. A., & Antonino-Daviu, J. A. (2022). Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies, 15(15), 5404 https://doi.org/10.3390/en15155404 [CrossRef] [Google Scholar]
  14. Azimov, U., & Avezova, N. (2022). Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply. Renewable and Sustainable Energy Reviews, 167, 112726 https://doi.org/10.1016/j.rser.2022.112726 [CrossRef] [Google Scholar]
  15. Chomać-Pierzecka, E., Kokiel, A., Rogozińska-Mitrut, J., Sobczak, A., Soboń, D., & Stasiak, J. (2022). Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential. Energies, 15(19), 7427 [CrossRef] [Google Scholar]
  16. Liu, K., Wang, J., Kang, X., Liu, J., Xia, Z., Du, K., & Zhu, X. (2022). Spatio-temporal analysis of population-land-economic urbanization and its impact on urban carbon emissions in Shandong Province, China. Land, 11(2), 266https://doi.org/10.3390/land11020266 [CrossRef] [Google Scholar]
  17. Vinayak, B., Lee, H. S., Gedam, S., & Latha, R. (2022). Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region, India. Sustainable Cities and Society, 79, 103703 https://doi.org/10.1016/j.scs.2022.103703 [CrossRef] [Google Scholar]
  18. Kanga, S., Singh, S. K., Meraj, G., Kumar, A., Parveen, R., Kranjčić, N., & Đurin, B. (2022). Assessment of the impact of urbanization on geoenvironmental settings using geospatial techniques: a study of Panchkula District, Haryana. Geographies, 2(1), 1–10. https://doi.org/10.3390/geographies2010001 [CrossRef] [Google Scholar]
  19. Humayun, M., Alsaqer, M. S., & Jhanjhi, N. (2022). Energy optimization for smart cities using IoT. Applied Artificial Intelligence, 36(1), 2037255 https://doi.org/10.1080/08839514.2022.2037255 [CrossRef] [Google Scholar]
  20. Heidari, A., Navimipour, N. J., & Unal, M. (2022). Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustainable Cities and Society, 104089. https://doi.org/10.1016/j.scs.2022.104089 [Google Scholar]
  21. Hasan, M. K., Khan, M. A., Issa, G. F., Atta, A., Akram, A. S., & Hassan, M. (2022, February). Smart waste management and classification system for smart cities using deep learning. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1–7). IEEE. https://doi.org/10.1109/ICBATS54253.2022.9759087 [Google Scholar]
  22. Sosunova, I., & Porras, J. (2022). IoT-enabled smart waste management systems for smart cities: A systematic review. IEEE Access.https://doi.org/10.1109/ACCESS.2022.3188308 [Google Scholar]
  23. Hashemi-Amiri, O., Mohammadi, M., Rahmanifar, G., Hajiaghaei-Keshteli, M., Fusco, G., & Colombaroni, C. (2023). An allocation-routing optimization model for integrated solid waste management. Expert Systems with Applications, 227, 120364 https://doi.org/10.1016/j.eswa.2023.120364 [CrossRef] [Google Scholar]
  24. Ang, K. L. M., Seng, J. K. P., Ngharamike, E., & Ijemaru, G. K. (2022). Emerging technologies for smart cities’ transportation: geo-information, data analytics and machine learning approaches. ISPRS International Journal of Geo-Information, 11(2), 85 https://doi.org/10.3390/ijgi11020085 [CrossRef] [Google Scholar]
  25. Chen, G., & Zhang, J. (2022). Applying Artificial Intelligence and Deep Belief Network to predict traffic congestion evacuation performance in smart cities. Applied Soft Computing, 121, 108692 https://doi.org/10.1016/j.asoc.2022.108692 [CrossRef] [Google Scholar]
  26. Saleem, M., Abbas, S., Ghazal, T. M., Khan, M. A., Sahawneh, N., & Ahmad, M. (2022). Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal, 23(3), 417–426. https://doi.org/10.1016/j.eij.2022.03.003 [CrossRef] [Google Scholar]
  27. Mall, P. K., Narayan, V., Pramanik, S., Srivastava, S., Faiz, M., Sriramulu, S., & Kumar, M. N. (2023). FuzzyNet-Based Modelling Smart Traffic System in Smart Cities Using Deep Learning Models. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 76–95). IGI Global. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.