Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 13008 | |
Number of page(s) | 12 | |
Section | Other Renewable Energies | |
DOI | https://doi.org/10.1051/e3sconf/202454013008 | |
Published online | 21 June 2024 |
- Dobrilovic, D., Pekez, J., Desnica, E., Radovanovic, L., Palinkas, I., Mazalica, M.,... & Mihajlovic, S. (2023). Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT. Sustainability, 15(9), 7440 [CrossRef] [Google Scholar]
- Mellit, A., & Kalogirou, S. (2021). Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews, 143, 110889 [CrossRef] [Google Scholar]
- Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F.,... & Alshamrani, S. S. (2022). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334–361. [CrossRef] [Google Scholar]
- Chen, Y., Lee, G. M., Shu, L., & Crespi, N. (2016). Industrial internet of things-based collaborative sensing intelligence: framework and research challenges. Sensors, 16(2), 215. [CrossRef] [PubMed] [Google Scholar]
- El Hammoumi, A., Motahhir, S., Chalh, A., El Ghzizal, A., & Derouich, A. (2018). Low-cost virtual instrumentation of PV panel characteristics using Excel and Arduino in comparison with traditional instrumentation. Renewables: wind, water, and solar, 5(1), 1–16. [CrossRef] [Google Scholar]
- Mnati, M. J., Van den Bossche, A., & Chisab, R. F. (2017). A smart voltage and current monitoring system for three phase inverters using an android smartphone application. Sensors, 17(4), 872. [CrossRef] [PubMed] [Google Scholar]
- Panagopoulos, O., & Argiriou, A. A. (2022). Low-cost data acquisition system for solar thermal collectors. Electronics, 11(6), 934 [CrossRef] [Google Scholar]
- Hamied, A., Boubidi, A., Rouibah, N., Chine, W., & Mellit, A. (2020). IoT-based smart photovoltaic arrays for remote sensing and fault identification. In Smart Energy Empowerment in Smart and Resilient Cities: Renewable Energy for Smart and Sustainable Cities (pp. 478–486). Springer International Publishing. [CrossRef] [Google Scholar]
- Arthur, S. (1967). Some Studies in Machine Learning. Using the Game of Checkers. IIRecent Progress. IBM J of Research and Development, 11(6), 601–617. [Google Scholar]
- AbdulMawjood, K., Refaat, S. S., & Morsi, W. G. (2018, April). Detection and prediction of faults in photovoltaic arrays: A review. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG 2018) (pp. 1–8). IEEE. [Google Scholar]
- Madeti, S. R., & Singh, S. N. (2017). Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 67, 1180–1207. [CrossRef] [Google Scholar]
- Tushar, W., Saha, T. K., Yuen, C., Smith, D., Ashworth, P., Poor, H. V., & Basnet, S. (2020). Challenges and prospects for negawatt trading in light of recent technological developments. Nature Energy, 5(11), 834–841. [CrossRef] [Google Scholar]
- Egli, F., Steffen, B., & Schmidt, T. S. (2018). A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy, 3(12), 1084–1092. [CrossRef] [Google Scholar]
- Bendiek, S. (2019). Artificial intelligence in europe-germany, outlook for 2019 and beyond: How 307 major companies benefit from ai. [Google Scholar]
- Vogel, L., Richard, P., Brey, M., Mamel, S., Schätz, K., Klobasa, M.,... & Plötz, P. (2019). dena-Report. Artificial intelligence for the integrated energy transition. [Google Scholar]
- Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on industrial informatics, 10(4), 2233–2243. [CrossRef] [Google Scholar]
- Martínez-López, F. J., & Casillas, J. (2013). Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Industrial Marketing Management, 42(4), 489–495. [CrossRef] [Google Scholar]
- Zheng, V. W., Zheng, Y., Xie, X., & Yang, Q. (2012). Towards mobile intelligence: Learning from GPS history data for collaborative recommendation. Artificial Intelligence, 184, 17–37. [CrossRef] [Google Scholar]
- Vermesan, O., & Friess, P. (Eds.). (2013). Internet of things: converging technologies for smart environments and integrated ecosystems. River publishers. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.