Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 13010
Number of page(s) 12
Section Other Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202454013010
Published online 21 June 2024
  1. Siregar, R. R. A., Seminar, K. B., Wahjuni, S., & Santosa, E. (2022). Vertical farming perspectives in support of precision agriculture using artificial intelligence: A review. Computers, 11(9), 135 [CrossRef] [Google Scholar]
  2. Podder, A. K., Al Bukhari, A., Islam, S., Mia, S., Mohammed, M. A., Kumar, N. M.,... & Abdulkareem, K. H. (2021). IoT based smart agrotech system for verification of Urban farming parameters. Microprocessors and Microsystems, 82, 104025 [CrossRef] [Google Scholar]
  3. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. [CrossRef] [Google Scholar]
  4. Herath, H. M. K. K. M. B., & Mittal, M. (2022). Adoption of artificial intelligence in smart cities: A comprehensive review. International Journal of Information Management Data Insights, 2(1), 100076 [CrossRef] [Google Scholar]
  5. Al-Shareeda, M. A., Manickam, S., & Saare, M. A. (2022, November). Intelligent Drone-based IoT Technology for Smart Agriculture System. In 2022 International Conference on Data Science and Intelligent Computing (ICDSIC) (pp. 41–45). IEEE. [Google Scholar]
  6. Dursun, M., & Ozden, S. (2011). A wireless application of drip irrigation automation supported by soil moisture sensors. Scientific Research and Essays, 6(7), 1573–1582. [Google Scholar]
  7. Manivannan, L., & Priyadharshini, M. S. (2016). Agricultural robot. International journal of advanced research in electrical, electronics and instrumentation engineering, 5(1), 153–156. [Google Scholar]
  8. Pedersen, S. M., Fountas, S., & Blackmore, S. (2008). Agricultural robots—Applications and economic perspectives. In Service robot applications. IntechOpen. [Google Scholar]
  9. Veroustraete, F. (2015). The rise of the drones in agriculture. EC agriculture, 2(2), 325–327. [Google Scholar]
  10. Ahirwar, S., Swarnkar, R., Bhukya, S., & Namwade, G. (2019). Application of drone in agriculture. International Journal of Current Microbiology and Applied Sciences, 8(01), 2500–2505. [CrossRef] [Google Scholar]
  11. Natu, A. S., & Kulkarni, S. C. (2016). Adoption and utilization of drones for advanced precision farming: A review. International journal on recent and innovation trends in computing and communication, 4(5), 563–565. [Google Scholar]
  12. Ragab, M. A., Badreldeen, M. M. M., Sedhom, A., & Mamdouh, W. M. (2022). IOT based smart irrigation system. International Journal of Industry and Sustainable Development, 3(1), 76–86. [Google Scholar]
  13. García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors, 20(4), 1042 [CrossRef] [PubMed] [Google Scholar]
  14. Gondchawar, N., & Kawitkar, R. S. (2016). IoT based smart agriculture. International Journal of advanced research in Computer and Communication Engineering, 5(6), 838–842. [Google Scholar]
  15. Robles, T., Alcarria, R., de Andrés, D. M., de la Cruz, M. N., Calero, R., Iglesias, S., & Lopez, M. (2015). An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., 6(1), 4–23. [Google Scholar]
  16. Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J. A., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74. [CrossRef] [Google Scholar]
  17. Popkova, E. G. (2022). Vertical farms based on hydroponics, deep learning, and AI as smart innovation in agriculture. In Smart innovation in agriculture (pp. 257–262). Singapore: Springer Nature Singapore. [CrossRef] [Google Scholar]
  18. Ahmad, L., & Nabi, F. (2021). Agriculture 5.0: Artificial Intelligence, IoT and Machine Learning. CRC Press. [Google Scholar]
  19. Rohit, R. V. S., Chandrawat, D., & Rajeswari, D. (2021). Smart Farming Techniques for New Farmers Using Machine Learning. In Proceedings of 6th International Conference on Recent Trends in Computing: ICRTC 2020 (pp. 207–220). Springer Singapore. [Google Scholar]
  20. Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.