Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 13013
Number of page(s) 11
Section Other Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202454013013
Published online 21 June 2024
  1. Liu, Z., Hsu, Y. P., & Hella, M. M. (2020). A thermal/RF hybrid energy harvesting system with rectifying-combination and improved fractionalOCV MPPT method. IEEETransactions on Circuits and Systems I: Regular Papers, 67(10), 3352–336. [CrossRef] [Google Scholar]
  2. Gondal IA. Offshore renewable energy resources and their potential in a greenhydrogen supply chain through power-to-gas. Sustainable Energy & Fuels. 2019;3(6):1468–1489. [CrossRef] [Google Scholar]
  3. Maheshwari N, Dagale H. Secure communication and firewall architecture for IoT applications. In: 2018 10th International Conference on Communication Systems & Networks (COMSNETS). IEEE; 2018. pp. 328–335. [Google Scholar]
  4. Adila AS, Husam A, Husi G. Towards the self-powered Internet of Things (IoT) byenergyharvesting: Trends and technologies for greenIoT. In: 2018 2nd International Symposium on Small-Scale Intelligent ManufacturingSystems (SIMS). Cavan, Ireland: IEEE; 2018. pp. 1–5. [Google Scholar]
  5. Roy, S., Azad, A. W., Baidya, S., Alam, M. K., & Khan, F. (2022). Powering solutions for biomedical sensors and implants inside the human body: a comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Transactions on Power Electronics, 37(10), 12237–12263. [CrossRef] [Google Scholar]
  6. Hassan N, Gillani S, Ahmed E, Yaqoob I, Imran M. The role of edge computing in internet of things. IEEE Communications Magazine. 2018;56(11):110–115. [CrossRef] [Google Scholar]
  7. Li H, Ota K, Dong M. Learning IoT in edge: Deep learning for the internet of things with edge computing. IEEE Network. 2018;32(1):96–101. [CrossRef] [Google Scholar]
  8. Saini, G., Somappa, L., & Baghini, M. S. (2020). A 500-nW-to-1-mW input power inductive boost converter with MPPT for RF energy harvesting system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(5), 5261–5271. [Google Scholar]
  9. Diab A, Mitschele-Thiel A. Self-organization activities in LTE advanced networks. In: Handbook of Research on Progressive Trends in Wireless Communications and Networking. Pennsylvania, US: IGI Global; 2014. pp. 67–98. [CrossRef] [Google Scholar]
  10. Chen B, Wan J, Celesti A, Li D, Abbas H, Zhang Q. Edge computing in IoT-based manufacturing. IEEE Communications Magazine. 2018;56(9):103–109. [CrossRef] [Google Scholar]
  11. Shuvo, M. M. H., Titirsha, T., Amin, N., & Islam, S. K. (2022). Energy harvesting in implantable and wearable medical devices for enduring precision healthcare. Energies, 15(20), 7495 [CrossRef] [Google Scholar]
  12. Peng, W., & Du, S. (2023). The Advances in Conversion Techniques in Triboelectric Energy Harvesting: A Review. IEEE Transactions on Circuits and Systems I: Regular Papers. [Google Scholar]
  13. Álvarez-Carulla, A., Colomer-Farrarons, J., & Miribel, P. L. (2018). Low-Power Energy Harvesting Solutions for Smart Self-Powered Sensors. Sensors for Diagnostics and Monitoring, 217–250. [Google Scholar]
  14. Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics, 10(6), 661 [CrossRef] [Google Scholar]
  15. Abdelgawad, H. (2020). Maximizing efficiency of solar energy harvesting systems supplying a microgrid using an embedded system. University of Ontario Institute of Technology (Canada). [Google Scholar]
  16. Álvarez-Carulla, A., Colomer-Farrarons, J., & Català, P. L. M. (2022). Self-powered Energy Harvesting Systems for Health Supervising Applications. Springer Nature. [CrossRef] [Google Scholar]
  17. Ch. NarendraKumar, M. Pradeep, N. Rajeswaran, T. Samraj Lawrence. Sensor Based Smart Monitoring and Controlling System for Cultivation using Labview. International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume-8 Issue-11, September 2019, 3687–3691. [CrossRef] [Google Scholar]
  18. J Kavitha, Rokesh Kumar Yarava Energy Efficiency Analysis between Green Computing and Cloud Computing in International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277–3878, ELSEVIER, Scopus, (Volume-8 Issue3S2, October 2019, Pages: 254–258). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.