Open Access
Issue
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
Article Number 02001
Number of page(s) 7
Section Extractive Metallurgy
DOI https://doi.org/10.1051/e3sconf/202454302001
Published online 03 July 2024
  1. Yli-Penttilä J., Peuraniemi E., Jokilaakso A., & Riihilahti K. (1998): Miner. Metall. Process., 15(4), 41-47. [Google Scholar]
  2. Seo K., & Sohn H. (1991): Metall. Mater. Trans. B, 41B(6), 791-799. [CrossRef] [Google Scholar]
  3. Björkman B., Eriksson J., Nedar L., & Samuelsson C. (1996): JOM, 48(3), 45-49. [CrossRef] [Google Scholar]
  4. Samuelsson C., & Carlsson G. (2001): Can. Metall. Quart., 40 (1), 79-90. [Google Scholar]
  5. Jones & Davenport W. (1996): Minimization of dust generation in Outokumpu flash furnace. In: EDP Congress 1996 (Warren G., Ed.). TMS, Warrendale (PA), pp. 81-94. [Google Scholar]
  6. Barros K., Vielmo V., Moreno B., Riveros G., Cifuentes G. & Bernardes A. (2022): Minerals, 12, 250. [CrossRef] [Google Scholar]
  7. Zhang W., Che J., Xia L., Wen P., Chen J., Ma B., & Wang C. (2021): J. Haz. Mater., 412, 125232. [Google Scholar]
  8. Chen Y., Zhao Z., Taskinen P., Liang Y., Ouyang H., Peng B., Jokilaakso A., Zhou S., Chen T., Peng N., & Liu H. (2020): Metall. Mater. Trans. B, 51B(6), 2596-2608. [CrossRef] [Google Scholar]
  9. Zeng D., Xie C., Zhu B., & Song W. (2004): Mater. Lett., 58, 312-315. [Google Scholar]
  10. Asteljoki J., & Kytö M. (1986): Minor element behaviour in flash converting. In: TMS-AIME Annual Meeting 1986, New Orleans, March 2-6, 1986. TMS Technical Paper No A86-57, 13 p. [Google Scholar]
  11. Lehmusto J., Stenlund D., Lindgren M., & Yrjas P. (2017): Oxid. Met., 87(1), 199-214. [CrossRef] [Google Scholar]
  12. Montenegro V., Sano H., & Fujisawa T. (2013): Miner. Engin., 49, 184-189. [Google Scholar]
  13. Yang Y., Jokilaakso A., Taskinen P. & Kytö M. (1999): JOM, 51(5), 36-40. [CrossRef] [Google Scholar]
  14. Safe P., & Jones D. (1998): Process off-gas cooling design considerations for non-ferrous metallurgical processes. In: Sulfide Smelting ’98 (Ed. J. Asteljoki & R. Stephens). TMS, Warrendale (PA), pp. 401-415. [Google Scholar]
  15. Zhang D., & Ma T. (2021): Energy, 241, 122852. [Google Scholar]
  16. Zhou H., Liu G., Zhang L., & Zhou C. (2021): Chem. Eng. J., 432, 130193. [Google Scholar]
  17. Kuang J., Tu F., Mao G., & Liu H. (2016): Numerical simulation of waste heat boiler for copper flash smelting. In: 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016), Guangzhou, China, June 18-19, 2016. Lancaster, PA, USA: DEStech Publications, Inc., pp. 435-440. ISBN: 978-1-60595-364-9. [Google Scholar]
  18. Schmidt A., Guy B., Montenegro V., Reuter M., Charitos A., Stelter M., & Richter A. (2023): J. Sustain. Metall., 9 (2), 848-859. [Google Scholar]
  19. Chen Y., Zhu S., Taskinen P., Peng N., Peng B., Jokilaakso A., Liu H., Liang Y., Zhao Z., & Wang Z. (2020): Miner. Eng., 164, 106796. [Google Scholar]
  20. Balladares E., Kelm U., Helle S., Parra R., & Araneda E. (2014): Dyna, 81(186), 11-18. [CrossRef] [Google Scholar]
  21. Miettinen E. (2008): Thermal conductivity and characteristics of copper flash smelting flue dust accretions. PhD Thesis, Helsinki University of Technology, Espoo (Finland), 87 p. [Google Scholar]
  22. Ranki-Kilpinen T. (2004): Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions. PhD Thesis, Helsinki University of Technology, Espoo (Finland), 62 p. [Google Scholar]
  23. Lehmusto J., Vainio E., Laurén T., & Lindgren M. (2018): Metall. Mater. Trans. B, 49B(1), 434-439. [CrossRef] [Google Scholar]
  24. Wang Y., Fang Z., Dong Q., Chu Y., Shi X., Song M., & Hao Z. (2019): Appl. Surf. Sci., 491, 590-594. [CrossRef] [Google Scholar]
  25. Low F., & Zhang L. (2013): Proc. Combust. Inst., 34, 2877-2884. [Google Scholar]
  26. Safarzadeh M., Miller J., & Huang H. (2014): Metall. Res. Technol., 111, 95-105. [Google Scholar]
  27. Hirsch M., Sterling R., Huggins F., & Helble J. (2000): Environm. Eng. Sci., 17(6), 315-327. [Google Scholar]
  28. Prostakova V., Shishin D., & Jak, E. (2021): Calphad, 72, 102235. [CrossRef] [Google Scholar]
  29. Gisby J. (2016): Phase Equilibria Data for Oxide, Sulphide and Fluoride Systems. Report MAT(RES) #268. NPL, Teddington, UK, 149 p. [Google Scholar]
  30. Gisby J., Taskinen P., Pihlasalo J., Li Z., Tyrer M., Pearce J., Avarmaa K., Björklund P., Davies H., Korpi M., Martin S., Pesonen L., & Robinson J. (2017): Metall. Mater. Trans. B, 48B(1), 91-98. [CrossRef] [Google Scholar]
  31. Wan X., Sukhomlinov D., Taskinen P., Lindgren M., & Jokilaakso A. (2022): Condensation of arsenic in FSF atmospheres in typical WHB and ESP conditions. In: Proc. Copper 2022, vol. 3, Pyrometallurgy (The Igor Wilkomirsky Symposium on Pyrometallurgy). Instit. Ingen. Minas Chile (IMMCh), Santiago, Chile, pp. 366-379. [Google Scholar]
  32. Wan X., Sukhomlinov D., Taskinen P., Lindgren M., & Jokilaakso A. (2023): Metall. Mater. Trans. B, 54(5), 2747-57; DOI: https://doi.org/10.1007/s11663-023-02871-9. [CrossRef] [Google Scholar]
  33. Roine A. (2019): HSC Chemistry, vers. 9.9.3.3. Outotec Research, Pori (Finland). [Google Scholar]
  34. Piontek S., Andronescu C., Zaichenko A., Konkena B., Puring K., Marler B., Antoni H., Sinev I., Muhler M., Molienhauer D., Cuenya B., Schuhmann W., & Apfel U. (2018): ACS Catalysis, 8(3), 987-996. [CrossRef] [Google Scholar]
  35. Talanquer V. (2002): J. Chem. Educat., 79(7), 877-883. [Google Scholar]
  36. Kulmala M., Petäjä T., Ehn M., Thornton J., Sipilä M., Worsnop D., & Kerminen V-M. (2014): Annu. Rev. Phys. Chem., 65, 21-37. [Google Scholar]
  37. Vartiainen A., Taskinen P., & Jokilaakso A. (1991): Behaviour of Impurities on the Suspension Stage of the OUTOKUMPU Flash Smelting Furnace. In: Kellogg International Symposium - Quantitative Description of Metal Extraction Processes (N. Themelis & P. Duby, Ed.). TMS Publication, Warrendale (PA), pp. 45-68. [Google Scholar]
  38. Taskinen P., Kolhinen T., & Anjala Y. (2008): The influence of Reaction shaft conditions on the behaviour of impurities in flash smelting and direct blister smelting. In: Int. Conf. By-product (Accompanying) Metals in Non-ferrous Metals Industry, Gliwice (Poland) 9-11.04.2008, 11 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.