Open Access
Issue
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
Article Number 03002
Number of page(s) 12
Section Physical Metallurgy and Corrosion
DOI https://doi.org/10.1051/e3sconf/202454303002
Published online 03 July 2024
  1. R. Mohammad and R. Kandasamy, “Nanoparticle shapes on electric and magnetic force in water, ethylene glycol and engine oil based Cu, Al2O3 and SWCNTs,” J. Mol. Liq., vol. 237, pp. 54-64, 2017, doi: 10.1016/j.molliq.2017.04.045. [Google Scholar]
  2. M. Krajčík and O. Šikula, “The possibilities and limitations of using radiant wall cooling in new and retrofitted existing buildings,” Appl. Therm. Eng., vol. 164, no. October 2019, p. 114490, 2020, doi: 10.1016/j.applthermaleng.2019.114490. [Google Scholar]
  3. B. L. Jónsson, G. Ö. Gararsson, Ó. Pétursson, S. B. Hlynsson, and J. T. Foley, “Ultrasonic Gasoline Evaporation Transducer - Reduction of Internal Combustion Engine Fuel Consumption using Axiomatic Design,” Procedia CIRP, vol. 34, pp. 168-173, 2015, doi: 10.1016/j.procir.2015.07.061. [CrossRef] [Google Scholar]
  4. H. Gürbüz, S. Demirtürk, İ. H. Akçay, and H. Akçay, “Effect of port injection of ethanol on engine performance, exhaust emissions and environmental factors in a dual-fuel diesel engine,” Energy Environ., vol. 32, no. 5, pp. 784-802, 2021, doi: 10.1177/0958305X20960701. [CrossRef] [Google Scholar]
  5. B. Buonomo, L. Cirillo, O. Manca, and S. Nardini, “Effect of nanofluids on heat transfer enhancement in automotive cooling circuits,” AIP Conf. Proc., vol. 2191, no. December, 2019, doi: 10.1063/1.5138764. [Google Scholar]
  6. J. Kral, B. Konecny, J. Kral, K. Madac, G. Fedorko, and V. Molnar, “Degradation and chemical change of longlife oils following intensive use in automobile engines,” Meas. J. Int. Meas. Confed., vol. 50, no. 1, pp. 34-42, 2014, doi: 10.1016/j.measurement.2013.12.034. [CrossRef] [Google Scholar]
  7. W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432-460, 2008, doi: 10.1080/01457630701850851. [CrossRef] [Google Scholar]
  8. Y. Liang, S. Hu, J. Shen, H. Zhang, and P. Wang, “Journal of Materials Processing Technology Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding,” J. Mater. Process. Tech., vol. 239, pp. 18-30, 2017, doi: 10.1016/j.jmatprotec.2016.08.005. [CrossRef] [Google Scholar]
  9. R. Pourrajab, A. Noghrehabadi, E. Hajidavalloo, and M. Behbahani, “Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: Synthesis, characterization and experimental study,” J. Mol. Liq., vol. 300, p. 112337, 2020, doi: 10.1016/j.molliq.2019.112337. [CrossRef] [Google Scholar]
  10. V. Sridhara and L. N. Satapathy, “Al 2 O 3 -based nanofluids : a review,” pp. 1-16, 2011. [Google Scholar]
  11. I. Zakaria, W. H. Azmi, W. A. N. W. Mohamed, R. Mamat, and G. Najafi, “Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water - Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application,” Int. Commun. Heat Mass Transf., vol. 61, pp. 61-68, 2015, doi: 10.1016/j.icheatmasstransfer.2014.12.015. [CrossRef] [Google Scholar]
  12. I. Zakaria, W. A. N. W. Mohamed, W. H. Azmi, A. M. I. Mamat, R. Mamat, and W. R. W. Daud, “Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids,” Int. J. Heat Mass Transf., vol. 119, pp. 460-471, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.137. [CrossRef] [Google Scholar]
  13. L. Li, X. Y. Liu, X. Wang, and M. Wu, “Effect of cooling methods on mechanical and corrosion properties of Inconel 625 during solution treatment,” J. Phys. Conf. Ser., vol. 1948, no. 1, 2021, doi: 10.1088/1742-6596/1948/1/012127. [Google Scholar]
  14. G. Kini et al., “Corrosion in Liquid Cooling Systems with Water-Based Coolant - Part 1: Flow Loop Design for Reliability Tests,” Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITHERM, vol. 2020-July, no. Ml, pp. 422-428, 2020, doi: 10.1109/ITherm45881.2020.9190607. [Google Scholar]
  15. Q. Hu, Y. Liu, T. Zhang, and F. Wang, “Corrosion failure analysis on the copper alloy flange by experimental and numerical simulation,” Eng. Fail. Anal., vol. 109, p. 104276, 2020, doi: 10.1016/j.engfailanal.2019.104276. [CrossRef] [Google Scholar]
  16. C. Y. Zheng, J. Y. Wu, X. Q. Zhai, G. Yang, and R. Z. Wang, “Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls,” Energy, vol. 101, pp. 447-461, 2016, doi: 10.1016/j.energy.2016.02.030. [CrossRef] [Google Scholar]
  17. M. Sinha and R. K. Tyagi, “Strength and corrosion analysis in alloy steel and E-glass composite wear ring in automotive engine cooling water pump,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1474-1478, 2020, doi: 10.1016/j.matpr.2019.11.054. [CrossRef] [Google Scholar]
  18. N. Lebozec, N. Blandin, and D. Thierry, “Accelerated corrosion tests in the automotive industry: A comparison of the performance towards cosmetic corrosion,” Mater. Corros., vol. 59, no. 11, pp. 889-894, 2008, doi: 10.1002/maco.200804168. [CrossRef] [Google Scholar]
  19. D. Özkan, Y. Erarslan, C. Kıncal, O. Gürlü, and M. B. Yağcı, “Wear and corrosion resistance enhancement of chromium surfaces through graphene oxide coating,” Surf. Coatings Technol., vol. 391, no. December 2019, p. 125595, 2020, doi 10.1016/j.surfcoat.2020.125595. [CrossRef] [Google Scholar]
  20. N. Palaniappan, I. S. Cole, A. Kuznetsov, K. R. J. Thomas, B.K., and S. Manickam, “Experimental and DFT studies of gadolinium decorated graphene oxide materials for their redox properties and as a corrosion inhibition barrier layer on Mg AZ13 alloy in a 3.5% NaCl environment,” RSC Adv., vol. 11, no. 36, pp. 22095-22105, 2021, doi 10.1039/d1ra03495b. [CrossRef] [Google Scholar]
  21. F. Zhang et al., “The effect of functional graphene oxide nanoparticles on corrosion resistance of waterborne polyurethane,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 591, no. December 2019, 2020, doi: 10.1016/j.colsurfa.2020.124565. [CrossRef] [Google Scholar]
  22. H. Ijaz, H. Raza, G. A. Gohar, S. Ullah, A. Akhtar, and M. Imran, “Effect of graphene oxide doped nano coolant on temperature drop across the tube length and effectiveness of car radiator - A CFD study,” Therm. Sci. Eng. Prog., vol. 20, no. August, p. 100689, 2020, doi: 10.1016/j.tsep.2020.100689. [CrossRef] [Google Scholar]
  23. R. Prasanna Shankara et al., “An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids,” Alexandria Eng. J., vol. 61, no. 7, pp. 5155-5167, 2022, doi: 10.1016/j.aej.2021.10.037. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.