Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 01013
Number of page(s) 7
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures)
DOI https://doi.org/10.1051/e3sconf/202454401013
Published online 02 July 2024
  1. Al Qabany, A., Soga, K. “Effect of chemical treatment used in MICP on engineering properties of cemented soils”, Geotechnique, 63(4), pp. 107–115, 2014. [Google Scholar]
  2. Baek S. “Microbially Induced Calcite Precipitation (MICP): From Pore-scale Cementation Patterns to Their Effect on Hydraulic Conductivity and Suffusion Control”, Ph.D. Thesis, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea, 2022. [Google Scholar]
  3. Baek S., Kwon, T.H., DeJong, J.T. “Reductions in hydraulic conductivity of sands caused by microbially induced calcium carbonate precipitation (MICP).”, Journal of Geotechnical and Geoenvironmental Engineering, 2023. (in review) [Google Scholar]
  4. Bick, P., Bastola, H., Suleiman, M.T., Gu, J., Diplas, P., Brown, D.G. and Zouari, N. “Minimizing wind erosion using microbial induced carbonate precipitation.” In Geo-Congress 2019: Soil Improvement, pp. 223–230. Reston, VA: American Society of Civil Engineers, 2019. [Google Scholar]
  5. Cheng L, Cord-Ruwisch R, Shahin MA. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation”, Canadian Geotechnical Journal, 50(1), pp. 81–90, 2013. [CrossRef] [Google Scholar]
  6. Choi, S. G., Chu, J., Brown, R.C., Wang, K., Wen, Z. “Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass”, ACS Sustainable Chemistry & Engineering, 5(6), pp. 5183–5190, 2017. [CrossRef] [Google Scholar]
  7. Darby, K., Hernandez, G., Dejong, J., Boulanger, R., Gomez, M., and Wilson, D. “ Centrifuge Model Testing of Liquefaction Mitigation via Microbially Induced Calcite Precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 2019. [Google Scholar]
  8. DeJong, J.T., Fritzges, M. B., Nusslein, K. “ Microbially induced cementation to control sand response to undrained shear”, Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1381–1392, 2006. [CrossRef] [Google Scholar]
  9. DeJong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C. “Bio-mediated soil improvement”, Ecological Engineering, 36(2), pp. 197–210, 2010. [CrossRef] [Google Scholar]
  10. DeJong, J.T., Gomez, M.G., San Pablo, A.C., Graddy, C.M.R., Nelson, D.C., Lee, M., Ziotopoulou, K., El Kortbawi, M., Montoya, B. and Kwon, T.H., 2022. “State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation”, Proceedings of the 20th ICSMGE-State of the Art and Invited Lectures, 2022. [Google Scholar]
  11. Gao, K., Lin, H., Suleiman, M.T., Bick, P., Babuska, T., Li, X., Helm, J., Brown, D.G., Zouari, N. “Shear and Tensile Strength Measurements of CaCO 3 Cemented Bonds between Glass Beads Treated by Microbially Induced Carbonate Precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 149(1), pp. 04022117, 2023. [CrossRef] [Google Scholar]
  12. Gomez, M.G., Martinez, B.C., DeJong, J.T., Hunt, C.E., deVlaming, L.A., Major, D.W. and Dworatzek, S.M., “Field-scale bio-cementation tests to improve sands.” Proceedings of the Institution of Civil Engineers-Ground Improvement 168(3): 206–216, 2015. [CrossRef] [Google Scholar]
  13. Ham, S. M., Martinez, A., Han, G., Kwon, T. H. “Grain-scale tensile and shear strengths of glass beads cemented by MICP”, Journal of Geotechnical and Geoenvironmental Engineering, 148(9), pp. 04022068, 2022. [CrossRef] [Google Scholar]
  14. Harkes, M., Van Paassen, L., Booster, J., Whiffin, V., and van Loosdrecht, M. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecological Engineering 36(2): 112–117, 2010. [CrossRef] [Google Scholar]
  15. Lin, H., Suleiman, M. T., Brown, D. G., Kavazanjian Jr, E. “Mechanical behavior of sands treated by microbially induced carbonate precipitation”, Journal of Geotechnical and Geoenvironmental Engineering, 142(2), pp. 04015066, 2016. [CrossRef] [Google Scholar]
  16. Mahawish, A., Bouazza, A. and Gates, W.P., “Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels” Journal of Geotechnical and Geoenvironmental Engineering, 145(8), p. 04019033, 2019. [CrossRef] [Google Scholar]
  17. Mitchell, A.C., Ferris, F.G. “The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence” Geochimica et Cosmochimica Acta, 69(17), pp. 4199–4210, 2005. [CrossRef] [Google Scholar]
  18. Montoya, B., Feng, K. “Deformation of microbial induced calcite bonded sands: a micro-scale investigation”, In: the sixth international symposium on deformation characteristics of geomaterials, Buenos Aires, 2015. [Google Scholar]
  19. Nafisi, A., Safavizadeh, S.,Montoya, B. “Influence of Microbe and Enzyme-Induced Treatments on Cemented Sand Shear Response”, Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 2019. [CrossRef] [Google Scholar]
  20. Seifan, M., Berenjian, A. “Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world”, Applied Microbiology and Biotechnology, 103(12), pp. 4693–4708, 2019. [CrossRef] [PubMed] [Google Scholar]
  21. Sturm, A.P. “On the liquefaction potential of gravelly soils: Characterization, triggering and performance.” Ph.D. dissertation, Dept. Civil and Environmental Engineering, Univ. of California, Davis, U.S.A., 2019. [Google Scholar]
  22. Pires-Sturm, A.P. and DeJong, J.T. “Influence of particle size and gradation on liquefaction potential and dynamic response.” Journal of Geotechnical and Geoenvironmental Engineering, 148(6): 04022045, 2022. [CrossRef] [Google Scholar]
  23. Terzis, D. and Laloui, L. “3-D micro-architecture and mechanical response of soil cemented via microbial induced calcite precipitation”, Scientific Reports, 8(1), pp. 1–11, 2018. [CrossRef] [Google Scholar]
  24. van Paassen, L. “Bio-mediated ground improvement: from laboratory experiment to pilot applications”, In: Geo- zFrontiers 2011: Advances in Geotechnical Engineering, 2011, pp. 4099–4108. [Google Scholar]
  25. van Paassen, L.A., Ghose, R., van der Linden, T.J., van der Star, W.R. and van Loosdrecht, M.C. “Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment”, Journal of Geotechnical and Geoenvironmental Engineering, 136(12), pp. 1721–1728, 2010. [CrossRef] [Google Scholar]
  26. Whiffin, V. S., Van Paassen, L. A.,Harkes, M. P. #“Microbial carbonate precipitation as a soil improvement technique”, Geomicrobiology Journal, 24(5), pp. 417–423, 2007. [CrossRef] [Google Scholar]
  27. Zhao, Q., Li, L., Li, C., Li, M., Amini, F., Zhang, H. “Factors affecting improvement of engineering properties of MICPtreated soil catalyzed by bacteria and urease”, Journal of Materials in Civil Engineering, 26(12), pp. 04014094, 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.