Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 01019
Number of page(s) 6
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures)
DOI https://doi.org/10.1051/e3sconf/202454401019
Published online 02 July 2024
  1. Adamo, F., Andria, G., Bottiglieri, O., Cotecchia, F., Di Nisio, A., Miccoli, D., Sollecito, F., Spadavecchia, M., Todaro, F., Trotta, A. and Vitone, C. “GeoLab, a measurement system for the geotechnical characterization of polluted submarine sediments”, Measurement 127, pp. 335–347. 2018. https://doi.org/10.1016/j.measurement.2018.06.001 [CrossRef] [Google Scholar]
  2. Bish, D. and Plotze, M. X-ray Powder Diffraction with Emphasis on Qualitative and Quantitative Analysis in Industrial Mineralogy. In EMU Notes in Mineralogy. Advances in the Characterization of Industrial Minerals (Christidis G (ed.)), 9(1), pp. 35–76. 2011. [Google Scholar]
  3. Caicedo, B., Mendoza, C., Lopez, F. and Lizcano, A. “Behavior of diatomaceous soil in lacustrine deposits of Bogota, Colombia”, J. Rock Mech. Geotech. Eng. 10(2), pp. 367–379. 2018. https://doi.org/10.1016/j.jrmge.2017.10.005 [CrossRef] [Google Scholar]
  4. Cardellicchio, N., Buccolieri, A., Giandomenico, S., Lopez, L., Pizzulli, F. and Spada, L. “Organic pollutants (PAHs PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea. Southern Italy)”, Mar Pollut Bull. 55, pp. 451–458. 2007. 10.1016/j.marpolbul.2007.09.007. [CrossRef] [Google Scholar]
  5. Cotecchia, F., Vitone, C., Sollecito, F., Mali, M., Miccoli D., Petti, R., Milella, D., Ruggieri, G., Bottiglieri, O., Santaloia, F., De Bellis, P., Cafaro, F., Notarnicola, M., Todaro, F., Adamo, F., Di Nisio, A., Lanzolla, A. M. L., Spadavecchia, M., (…) Corbelli, V. “A geo-chemo-mechanical study of a highly polluted marine system (Taranto, Italy) for the enhancement of the conceptual site model”, Sci. Rep. 11, 4017. 2021. https://doi.org/10.1038/s41598-021-82879-w [CrossRef] [Google Scholar]
  6. Delage, P. and Lefebvre, G. “Study of the structure of the sensitive Champlain Clay and of its evolution during consolidation”, Can. Geotech. J. 21(1), pp. 21–35. 1984. [CrossRef] [Google Scholar]
  7. Dell’Abate, M. T., Benedetti, A. and Sequi, P. “Thermal methods of organic matter maturation monitoring during a composting process”, J. Therm. Anal. Calorim. 61, pp. 389–396. 2000. [CrossRef] [Google Scholar]
  8. Dobelin, N. and Kleeberg, R. “Profex: a graphical user interface for the Rietveld refinement program BGMN”, J. Appl. Crystallogr. 48(5), pp. 1573–1580. 2015. [CrossRef] [Google Scholar]
  9. Emmerich, K. 2011. “Thermal analysis in the characterization and processing of industrial minerals”. In: EMU Notes in Mineralogy. Advances in the Characterization of Industrial Minerals Christidis G (ed.)), Vol. 9(1), pp. 129–170. 2011. [Google Scholar]
  10. Guglielmi, S., Cotecchia, F., Cafaro, F. and Gens, A. Microstructural Changes Underlying the Macro-response of a Stiff Clay. In: Micro to MACRO Mathematical Modelling in Soil Mechanics (Giovine P., Mariano P., Mortara G. (eds)). Trends in Mathematics, Birkhauser, Cham, pp 89–97. 2018. [Google Scholar]
  11. Hattab, M., Hammad, T., Fleureau, J. M. and Hicher, P. Y. 2013. “Behaviour of a sensitive marine sediment: microstructural investigation”, Geotechnique 63(1), pp. 71–84. 2018. https://doi.org/10.1680/geot.10.P.104 [Google Scholar]
  12. Kralj, M., De Vittor, C., Comici, C., Relitti, F., Auriemma, R., Alabiso, G. and Del Negro, P. “Recent evolution of the physical–chemical characteristics of a Site of National Interest—the Mar Piccolo of Taranto (Ionian Sea)—and changes over the last 20 years”, Environ. Sci. Pollut. Res. 23, pp. 12675–12690. 2016. [CrossRef] [PubMed] [Google Scholar]
  13. Kristl, M., Muršec, M., Šuštar, V. and Kristl, J. “Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils”, J. Therm. Anal. Calorim. 123(3), pp. 2139–2147. 2016. [CrossRef] [Google Scholar]
  14. Lisco, S., Corselli, C., De Giosa, F., Mastronuzzi, G., Moretti, M., Siniscalchi, A., Marchese, F., Bracchi, V., Tessarolo, C. and Tursi, A. “Geology of Mar Piccolo, Taranto (southern Italy): the physical basis for remediation of a polluted marine area”, Journal of Maps 12(1), pp. 173–180. 2015. [Google Scholar]
  15. Lopez-Capel, E., Sohi, S. P., Gaunt, J. L. and Manning, D. A. C. “Use of thermogravimetry-differential scanning calorimetry to characterize modellable soil organic matter fractions”, Soil Sci Soc Am J. 69(1), pp. 136–40. 2005. https://doi.org/10.2136/sssaj2005.0136a [CrossRef] [Google Scholar]
  16. Maharaj, S., Barton, C. D., Karathanasis, T. A. D., Rowe, H. D. and Rimmer, S. M. “Distinguishing ‘‘new’’ from ‘‘old’’ organic carbon on reclaimed coal mine sites using thermogravimetry: method development”, Soil Science 172, no. 4, pp. 292–301. 2007. [Google Scholar]
  17. Melis, P. and Castaldi, P. “Thermal analysis for the evaluation of the organic matter evolution during municipal soild waste aerobic composting process”, Thermochim Acta 413, (1–2), pp. 209–14. 2004. [Google Scholar]
  18. Petronio, B. M., Cardellicchio, N., Calace, N., Pietroletti, M., Pietrantonio, M. and Caliandro, L. “Spatial and Temporal Heavy Metal Concentration (Cu, Pb, Zn, Hg, Fe, Mn, Hg) in sediments of the Mar Piccolo in Taranto (Ionian Sea, Italy)”, Water, Air, and Soil Pollution 223(2), pp. 863–875. 2012. [CrossRef] [Google Scholar]
  19. Roque, A. J., Paleologos, E. K., O’Kelly, B. C., Tang, A. M., Reddy, K. R., Vitone, C., Mohamed, A.-M. O., Koda, E., Goli, V. S. N. S., Vieira, C. S., Fei, X., Sollecito, F., Vaverkova, M. D., Plotze, M., Petti, R., Podlasek, A., Puzrin, A. M., Cotecchia, F., Osiński, P., Mohammad, A., Singh, P., El Gamal, M., Farouk, S., Al Nahyan, M.T., Mickovski, S. B., Singh, D. N. “Sustainable Environmental Geotechnics Practices for a Green Economy”, #Environ. Geotech. 9(2), pp. 68–84. 2022. [CrossRef] [Google Scholar]
  20. Sollecito F., Vitone, C., Miccoli, D., Plotze, M., Puzrin, A.M. and Cotecchia, F. “Marine sediments from a contaminated site: Geotechnical properties and chemo-mechanical coupling processes”, Geosciences 9, no 8: 333. 2019. https://doi.org/10.3390/geosciences9080333 [CrossRef] [Google Scholar]
  21. Sollecito, F., Plotze, M., Puzrin, A.M., Vitone, C., Miccoli, D., Cotecchia, F. “Effects of bio-chemo-mechanical processes on the properties of contaminated marine sediments”, Geotechnique. 2021. https://doi.org/10.1680/jgeot.21.00095 [Google Scholar]
  22. Tanaka, H. and Locat, J. “A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour”, Can. Geotech. J. 36(3), pp. 493–508. 1999. [CrossRef] [Google Scholar]
  23. Tanaka, H. “Pore size distribution and hydraulic conductivity characteristics of marine clays”. In Proc. 2nd International Symposium on Contaminated Sediments. Characterization, Evaluation, Mitigation/Restoration, Management Strategy Performance, pp. 151–157. 2003 [Google Scholar]
  24. Varghese, R., Chandrakaran, S. and Rangaswamy, K. “Geotechnical behaviour of different organic matter on clayey soils”, Geomechanics and geoengineering. 2019. [Google Scholar]
  25. Vitone, C., Federico, A., Puzrin, A.M., Plotze, M., Carrassi, E., and Todaro, F. “On the geotechnical characterisation of the polluted submarine sediments from Taranto”, Environ. Sci. Pollut. Res. 23, pp. 12495–12501. 2016. [Google Scholar]
  26. Vitone, C., Sollecito, F., Todaro, F. and Corbelli, V. “Contaminated marine sites: geotechnical issues bridging the gap between characterisation and remedial strategies”, RIG 4/2020, pp. 41–62. 2020. http://dx.doi.org/10.19199/2020.4.0557-1405.041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.