Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 04007 | |
Number of page(s) | 8 | |
Section | Experimental Investigations From Very Small Strains to Beyond Failure - Data Interpretation and Geotechnical Imaging | |
DOI | https://doi.org/10.1051/e3sconf/202454404007 | |
Published online | 02 July 2024 |
- Atkinson, J. H. 2000. “Non-linear soil stiffness in routine design.” Géotechnique, 50(5): 487–508. https://doi.org/10.1680/geot.2000.50.5.487 [CrossRef] [Google Scholar]
- Beesley, M. E. W. 2019. “A framework for assessing parameter variability of soil stress-strain data using triaxial test databases.” Ph.D. thesis, University of Bristol, Bristol, UK. [Google Scholar]
- Beesley, M. E. W., and Vardanega, P. J. 2020. “Parameter variability of undrained shear strength and strain using a database of reconstituted soil tests.” Canadian Geotechnical Journal, 57(8): 1247–1255. https://doi.org/10.1139/cgj-2019-0424 [CrossRef] [Google Scholar]
- Beesley, M. E. W., and Vardanega, P. J. 2021. “Variability of soil stress-strain non-linearity for use in MSD analyses evaluated using databases of triaxial tests on fine-grained soils.” In: Geotechnical Aspects of Underground Construction in Soft Ground edited by M. Z. E. B. Elshafie, et al., 217–225. 1st Ed. CRC Press/Taylor & Francis Group, The Netherlands. [Google Scholar]
- Beesley, M., Ibraim, E., and Vardanega, P. J. 2023. “Comparison of simple stress-strain models in the moderate strain range for fine-grained soils: A review.” these proceedings. [Google Scholar]
- Bell, F. G. 1992. “Engineering Properties of Soils and Rocks.” 3rd Ed., Butterworth-Heinemann, Oxford, UK. [Google Scholar]
- Bishop, A. W., and Henkel, D. J. 1962. “The measurement of soil properties in the triaxial test.” E. Arnold, London, UK. [Google Scholar]
- Brosse, A., Jardine, R. J., and Nishimura, S. 2017. “Undrained stiffness anisotropy from Hollow Cylinder experiments on four Eocene-to-Jurassic UK stiff clays.” Canadian Geotechnical Journal, 54(3): 313–332. https://doi.org/10.1139/cgj-2015-0320 [CrossRef] [Google Scholar]
- Burland, J. B. 1990. “On the compressibility and shear strength of natural clays.” Géotechnique, 40(3): 329–378. https://doi.org/10.1680/geot.1990.40.3.329 [CrossRef] [Google Scholar]
- Casey, B., Germaine, J. T., Abdulhadi, N. O., Kontopoulos, N. S., and Jones, C. A. 2016. “Undrained Young’s Modulus of fine-grained soils.” Journal of Geotechnical and Geoenvironmental Engineering, 142(2):[04015070]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001382 [Google Scholar]
- Ching, J., and Phoon, K.-K. 2013. “Multivariate distribution for undrained shear strengths under various test procedures.” Canadian Geotechnical Journal, 50(3): 907–923. https://doi.org/10.1139/cgj-2013-0002 [CrossRef] [Google Scholar]
- Dimmock, P. S., and Mair, R. J. 2007. “Estimating volume loss for open-face tunnels in London Clay.” Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 160(1): 13–22. https://doi.org/10.1680/geng.2007.160.1.13 [CrossRef] [Google Scholar]
- Duncan, J. M., and Chang, C- Y., 1970. “Nonlinear analysis of stress and strain in soils.” Journal of the Soil Mechanics and Foundations Division, 96(5): 1629–1652. https://doi.org/10.1061/JSFEAQ.0001458 [CrossRef] [Google Scholar]
- Germaine, J. T., and Ladd, C. C., 1988. “Triaxial testing of saturated cohesive soils.” Advanced Triaxial Testing of Soil and Rock (ASTM STP 977), edited by R. T. Donaghe, et al., 421–459. American Society for Testing and Materials, Philadelphia, PA. [Google Scholar]
- Jardine, R. J., Potts, D. M., Fourie, A. B., and Burland, J. B. 1986. “Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction.” Géotechnique, 36(3): 377–396. https://doi.org/10.1680/geot.1986.36.3.377 [CrossRef] [Google Scholar]
- Klar, A., and Klein, B. 2014. “Energy-based volume loss prediction for tunnel face advancement in clays.” Géotechnique, 64(10): 776–786. https://doi.org/10.1680/geot.14.P.024 [CrossRef] [Google Scholar]
- Macklin, S. R. 1999. “The prediction of volume loss due to tunnelling in overconsolidated clay based on heading geometry and stability number.” Ground Engineering, 32(4): 30–33. [Google Scholar]
- Matlock, H. 1970. “Correlations for design of laterally loaded piles in soft clay.” In: Offshore Technology Conference, Houston, Texas, USA. OTC 1204. [Google Scholar]
- McMahon, B. T., Haigh, S. K., and Bolton, M. D. 2014. “Bearing capacity and settlement of circular shallow foundations using a nonlinear constitutive relationship.” Canadian Geotechnical Journal, 51(9): 995–1003. https://doi.org/10.1139/cgj-2013-0275 [CrossRef] [Google Scholar]
- Osman, A. S., and Bolton, M. D. 2005. “Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay.” Géotechnique, 55(6): 435–447. https://doi.org/10.1680/geot.2005.55.6.435 [CrossRef] [Google Scholar]
- Parry, R. H. G., and Nadarajah, V. 1974. “Observations on laboratory prepared, lightly overconsolidated specimens of kaolin.” Géotechnique, 24(3): 345–357. https://doi.org/10.1680/geot.1974.24.3.345 [CrossRef] [Google Scholar]
- Poulos, H. G., and Davis, E. H. 1974. “Elastic solutions for soil and rock mechanics.” John Wiley & Sons Inc., New York. [Google Scholar]
- Puzrin, A. M., and Burland, J. B. 1996. “A logarithmic stress–strain function for rocks and soils.” Géotechnique, 46(1): 157–164. https://doi.org/10.1680/geot.1996.46.1.157 [CrossRef] [Google Scholar]
- Skempton, A. W. 1951. “The bearing capacity of clays.” (Reprinted from Building Research Congress, 1: 180–189) In Selected Papers on Soil Mechanics by A. W. Skempton, F.R.S., 50–59, Thomas Telford, London, UK. [Google Scholar]
- Sukolrat, J. 2007. “Structure and destructuration of Bothkennar Clay.” PhD thesis, University of Bristol, Bristol, UK. [Google Scholar]
- Valls-Marquez, M. 2009. “Evaluating the capabilities of some constitutive models in reproducing the experimental behaviour of stiff clay subjected to tunnelling stress paths.” Ph.D. thesis, University of Birmingham, Birmingham, UK. [Google Scholar]
- Vardanega, P. J., and Bolton, M. D. 2011. “Strength mobilization in clays and silts.” Canadian Geotechnical Journal, 48(10): 1485–1503. https://doi.org/10.1139/t11-052 [Corrigendum, 49(5):631]. [CrossRef] [Google Scholar]
- Vardanega, P. J., and Bolton, M. D. 2016a. “Discussion of “Undrained Young’s Modulus of fine-grained soils” by B. Casey, J.T. Germaine, N.O. Abdulhadi, N.S. Kontopoulos, and C.A. Jones.” Journal of Geotechnical and Geoenvironmental Engineering, 142(10):[07016023]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001571 [Google Scholar]
- Vardanega, P. J., and Bolton, M. D. 2016b. “Design of Geostructural Systems.” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part A: Civil Engineering 2(1):[04015017]. https://doi.org/10.1061/AJRUA6.0000849 [CrossRef] [Google Scholar]
- Zhang, Y., and Andersen, K. H. 2017. “Scaling of lateral pile p-y response in clay from laboratory stress-strain curves.” Marine Structures, 53: 124–135. https://doi.org/10.1016/j.marstruc.2017.02.002 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.