Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 10001
Number of page(s) 6
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Cyclic and Dynamic Behaviour
DOI https://doi.org/10.1051/e3sconf/202454410001
Published online 02 July 2024
  1. DB Netz AG 2021. “Richtlinie 836: Erdbauwerke und sonstige geotechnische Bauwerke planen, bauen und instand halten”, Standard for railway earthwork construction (in German), DB Netz AG, Frankfurt am Main. [Google Scholar]
  2. DIN 18126 2022. “Baugrund, Untersuchung von Bodenproben-Bestimmung der Dichte nicht bindiger Boden bei lockerster und dichtester Lagerung”, Standard test method for minimum and maximum densities (in German), Beuth Verlag GmbH, Berlin. http://doi.org/doi:10.31030/3329398 [Google Scholar]
  3. DIN EN ISO 14688–1 2020. “Geotechnical investigation and testing — Identification and classification of soil — Part 1: Identification and description”, Beuth Verlag GmbH, Berlin. https://dx.doi.org/10.31030/3187022 [Google Scholar]
  4. Herle, I. 1997. “Hypoplastizitat und Granulometrie einfacher Korngeruste”, Hypoplasticity and granulometry of simple grain skeletons (in German). Dissertation, Karlsruhe Institute of Technology,. ISSN 0453–3267 [Google Scholar]
  5. Herle, I. 2000 “Granulometric limits of hypoplastic models”, #Institute of Theoretical and Applied Mechanics, Czech AcademyTask Quarterly, Scientific Bulletin of Academic Computer Centre in Gdansk, 4(3), pp. 389–408. [online] Available at: https://bibliotekanauki.pl/articles/1954563.pdf [Google Scholar]
  6. Herle, I., and G. Gudehus 1999. “Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies”, Mechanics of Cohesive-frictional Materials, 4(5), pp. 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:53.0.CO;2-P [CrossRef] [Google Scholar]
  7. Knittel, L. “Verhalten granularer Boden unter mehrdimensionaler zyklischer Beanspruchung”. Behaviour of granular soils under multidimensional cyclic loading (in German). Dissertation, Karlsruhe Institute of Technology, 2020. ISSN: 0453–3267 [Google Scholar]
  8. Knittel, L., T. Wichtmann, A. Niemunis, G. Huber, E. Espino, and T. Triantafyllidis. 2020 “Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measurements”, #Acta Geotechnica, 15 (8), pp. 2075–2088. https://doi.org/10.1007/s11440-019-00893-9 [CrossRef] [Google Scholar]
  9. Lauer, C. 2021. “Bodenzustandsindex und zustandsabhangige Kennwerte fur gemischtkornige Boden.”, Soil state index and state dependent soil parameters for coarse-fine mixtures (in German), Dissertation, Technische Universitat Dresden. ISSN: 1434–3053 [Google Scholar]
  10. Mašin, D. 2017. “Modelling of soil behaviour with hypoplasticity”, Springer series in geomechanics and geoengineering, Springer, Cham, Switzerland. ISBN: 978–3-030–03976-9 [Google Scholar]
  11. Mašin, D., P.-A. von Wolffersdorff, C. Tamagnini 2017 “Clay and Sand hypoplasticity UMAT”. [online] Available at: https://soilmodels.com/download/plaxis-umat-hypoplaszip/ [Google Scholar]
  12. Meier, T. 2008 “Application of hypoplastic and viscohypoplastic constitutive models for geotechnical problems”, Dissertation, Karlsruhe Institute of Technology. ISSN: 0453–3267 [Google Scholar]
  13. Nagula S., and J. Grabe. 2020. ”Hypoplastic model with intergranular strain: Dependence on grain properties and initial state”, Geotechnical Engineering Journal, 51(4), pp. 122–129. ISSN 0046–5828 [Google Scholar]
  14. Ng, C., H. S. Sun, G. H. Lei, J. W. Shi, and D. Mašin 2015. “Ability of three different soil constitutive models to predict a tunnel’s response to basement excavation”, Canadian Geotechnical Journal, 52(11), pp. 1685–1698. https://doi.org/10.1139/cgj-2014-0361 [CrossRef] [Google Scholar]
  15. Niemunis, A. 2017 “Incremental Driver, user’s manual”, Karlsruhe Institute of Technology. [online] Available at: https://www.soilmodels.com/idriver [Google Scholar]
  16. Niemunis, A., and I. Herle. 1997 “Hypoplastic model for cohesionless soils with elastic strain range”, Mechanics of Cohesive-frictional Materials, 2(4), pp. 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:43.0.CO;2-8 [CrossRef] [Google Scholar]
  17. Oztoprak, S., and M. D. Bolton. 2013. “Stiffness of sands through a laboratory test database”, Geotechnique, 63(1), pp. 54–70. https://doi.org/10.1680/geot.10.P.078 [CrossRef] [Google Scholar]
  18. Rondon, H. A., T. Wichtmann, T. Triantafyllidis, and A. Lizcano 2007 #“Hypoplastic material constants for a wellgraded granular material for base and subbase layers of flexible pavements”, Acta Geotechnica, 2(2), pp. 113–126. https://doi.org/10.1007/s11440-007-0030-3 [CrossRef] [Google Scholar]
  19. Schunemann, A. 2006. “Numerische Modelle zur Beschreibung des Langzeitverhaltens von Eisenbahnschotter unter alternierender Beanspruchung”, Numerical models for the description of the longterm behaviour of railway ballast under alternating loading (in German), Dissertation, Karlsruhe Institute of Technology. ISSN: 0453–3267 [Google Scholar]
  20. Stutz, H., H. Reith, and A. Wappler 2022. “Bericht. DB-Projekt - Laborversuche an Kies-Hinterfullungsmaterial”, Report. DB-project - Experimental tests on gravel backfill material (in German). Tech. rep. (not published), Karlsruhe Institute of Technology. [Google Scholar]
  21. Wegener, D., and I. Herle. 2014 “Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model”, #Geotechnik, 37(2), pp. 113–122. https://doi.org/10.1002/gete.201300013 [CrossRef] [Google Scholar]
  22. Wolffersdorff, P.-A. v. 1996. “A hypoplastic relation for granular materials with a predefined limit state surface”, Mechanics of Cohesive-frictional Materials, 1(3), pp. 251–271, https://doi.org/10.1002/(SICI)1099-1484(199607)1:33.0.CO;2-3 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.