Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 11005
Number of page(s) 6
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement
DOI https://doi.org/10.1051/e3sconf/202454411005
Published online 02 July 2024
  1. ASTM D. 2013. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. [Google Scholar]
  2. Badiozamani, K., Mackenzie, F.T., Thorstenson, D.C. 1977. Experimental carbonate cementation; salinity, temperature and vadose-phreatic effects. Journal of Sedimentary Research, 47(2): 529–542. [Google Scholar]
  3. Chew, S.H., Kamruzzaman, A.H.M., Lee, F.H. 2006. Microstructure of cement-treated Singapore marine clay. Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(3): 113–123. [CrossRef] [Google Scholar]
  4. Chian, S.C., Chim, Y.Q., Wong, J.W. 2016. Influence of sand impurities in cement-treated clays. Géotechnique, 67(1): 31–41. [Google Scholar]
  5. Consoli, N.C. et al. 2010. Parameters Controlling Tensile and Compressive Strength of Artificially Cemented Sand. Journal of Geotechnical and Geoenvironmental Engineering, 136(5): 759–763. [CrossRef] [Google Scholar]
  6. Consoli, N.C., Párraga Morales, D., Saldanha, R.B. 2021. A new approach for stabilization of lateritic soil with Portland cement and sand: strength and durability. Acta Geotechnica, 16(5): 1473–1486. [Google Scholar]
  7. Coop, M.R., Atkinson, J.H. 1993. The mechanics of cemented carbonate sands. Geotechnique, 43(1): 53–67. [CrossRef] [Google Scholar]
  8. Lee, F.K., Lee, Y., Chew, S.H., Yong, K.Y., 2005. Strength and modulus of marine clay-cement mixes. Journal of Geotechnical and Geoenvironmental Engineering, 131(2): 178–186. [CrossRef] [Google Scholar]
  9. Liu, C., Starcher, R.D. 2012. Effects of Curing Conditions on Unconfined Compressive Strength of Cement- and Cement-Fiber-Improved Soft Soils. Journal of Materials in Civil Engineering, 25(8): 1134–1141. [Google Scholar]
  10. Locat, J., Trembaly, H., Leroueil, S. 1996. Mechanical amd hydraulic behaviour of a soft inorganic clay treated with lime. Canadian Geotechnical Journal, 33(4): 654–669. [CrossRef] [Google Scholar]
  11. Mishra, A.K., Ohtsubo, M., Li, L.Y., Higashi, T., Park, J. 2009. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures. Environmental Geology, 57(5): 1145–1153. [CrossRef] [Google Scholar]
  12. Mitchell, J.K., Soga, K. 2005. Fundamentals of soil behavior, 3rd. John Wiley & Sons, Hoboken, NJ. [Google Scholar]
  13. Nakamura, M., Matsuzawa, S., Matsushita, M. 1982. Study of the agitation mixing of improvement agents, Proc. of the 17” Japan National Conference on Soil Mechanics and Foundation Engineering, pp. 2585–2588. [Google Scholar]
  14. Park, S.-S., Kim, K.-Y., Choi, H.-S., Kim, C.-W. 2009. Effect of different curing methods on the unconfined compressive strength of cemented sand. Journal of the Korean Society of Civil Engineers, 29(5C): 207–215. [Google Scholar]
  15. Park, S.S. 2010. Effect of Wetting on Unconfined Compressive Strength of Cemented Sands. Journal of Geotechnical and Geoenvironmental Engineering, 136(12): 1713–1720. [CrossRef] [Google Scholar]
  16. Subramanian, S., Khan, Q., Ku, T. 2019. Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement. Construction and Building Materials, 202: 308–318. [CrossRef] [Google Scholar]
  17. Subramanian, S., Ku, T. 2017. Behaviour of cement treated Singapore marine clay with sand, The 30th KKHTCNN Symposium on Civil Engineering. [Google Scholar]
  18. Subramanian, S., Ku, T. 2023. A Framework to Investigate the Effect of Sand on Strength of Cement-Admixed Clay. Journal of Materials in Civil Engineering, 35(7):06023002. [Google Scholar]
  19. Subramanian, S., Moon, S.W., Moon, J., Ku, T. 2018. CSATreated Sand for Geotechnical Application: Microstructure Analysis and Rapid Strength Development. Journal of Materials in Civil Engineering, 30(12): 04018313–04018313. [CrossRef] [Google Scholar]
  20. Tan, T.S., Goh, T.L., Yong, K.Y. 1999. Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journ, 25(4): 422–433. [Google Scholar]
  21. Thevanayagam, S. 1998. Effect of fines and confining stress on undrained shear strength of silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 124(6): 479–491. [CrossRef] [Google Scholar]
  22. Uddin, K., Balasubramaniam, A.S., Bergado, D.T. 1997. Engineering behavior of cement-treated Bangkok soft clay, Geotechnical Engineering, pp. 89–119. [Google Scholar]
  23. Zhang, R.J., Lu, Y.T., Tan, T.-S., Phoon, K.K., Santoso, A.M. 2014. Long-term effect of curing temperature on the strength behavior of cement-stabilized clay. Journal of Geotechnical and Geoenvironmental Engineering, 140(8): 1–12. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.