Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 11007
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement
DOI https://doi.org/10.1051/e3sconf/202454411007
Published online 02 July 2024
  1. ASTM D2487-17e1. 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). [Google Scholar]
  2. ASTM D4972-01. 2017. Standard Test Method for pH of Soils. [Google Scholar]
  3. Ballester, P., Marmol, I., Morales, J. and Sanchez, L. 2007. Use of limestone obtained from waste of the mussel cannery industry for the production of mortars, Cement and Concrete Research, Volume 37, Issue 4:559–564, https://doi.org/10.1016/j.cemconres.2007.01.004 [Google Scholar]
  4. BSI. 1990. BS 1377: Methods of test for Soils for civil engineering purposes – Part 2: Classification tests. London, UK: BSI. [Google Scholar]
  5. Chilakala, R., Thannaree, C., Shin, E.J., Thenepalli, T. and Ahn, J.W. “Sustainable Solutions for Oyster Shell Waste Recycling in Thailand and the Philippines.” Recycling 2019, 4, 35, https://doi.org/10.3390/recycling4030035 [Google Scholar]
  6. Cyr, M., Lawrence, P. & Ringot, E. (2006). Efficiency of mineral admixtures in mortars: quantification of physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research, 36(2), 264–277. [CrossRef] [Google Scholar]
  7. Croft, J.B. 1967. “The influence of soil mineralogical composition on cement stabilization.” Geotechnique, 17 no. 2: 119–135, https://doi.org/10.1680/geot.1967.17.2.119 [CrossRef] [Google Scholar]
  8. Dell’Abate, M. T., Benedetti, A. and Sequi, P. 2000. “Thermal methods of organic matter maturation monitoring during a composting process.” J. Therm. Anal. Calorim. 61, No. 2, 389–396. [CrossRef] [Google Scholar]
  9. Dumbleton, M.J. 1962. “Investigations to assess the potentialities of lime for soil stabilization in the United Kingdom.” Road Research Technical Paper, Vol. 64. H.M. Stationery Office. [Google Scholar]
  10. Emmerich, K. 2011. Thermal analysis in the characterization and processing of industrial minerals. In Advances in the characterization of industrial minerals (ed. G. E. Christidis), EMU notes in mineralogy vol. 9, pp. 129–170. Twickenham, UK: European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland. [Google Scholar]
  11. FAO. 2016. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Food and Agriculture Organisation of the United Nations, Report, 200 pages. [Google Scholar]
  12. Federico, A., Vitone, C., Murianni, A. 2015. “On the mechanical behaviour of dredged submarine clayey sediments stabilized with lime or cement.” Canadian Geotechnical Journal 52: 1–11. [CrossRef] [Google Scholar]
  13. Gao, P., Liao, Z., Wang, X-x., Bao, L-f., Fan, M-h, Li, X-m, Wu, C-w and Xia, S-w. 2015. “Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.” PLoS ONE 10(7): e0133913, doi:10.1371/journal.pone.0133913 [Google Scholar]
  14. Kristl, M., Muršec, M., Šuštar, V. and Kristl, J. 2016. “Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils.” J. Therm. Anal. Calorim. 123, No. 3: 2139–2147. [CrossRef] [Google Scholar]
  15. Latifi, N., Vahedifard, F., Ehsan Ghazanfari, E. and Rashid, A. S. A. 2018. “Sustainable Usage of Calcium Carbide Residue for Stabilization of Clays.” Journal of Materials in Civil Engineering, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002313 [Google Scholar]
  16. Lopez-Capel, E., Sohi, S. P., Gaunt, J. L. and Manning, D. A. C. 2005. “Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions.” Soil Sci. Soc. Am. J. 69, No. 1, 136–140. [CrossRef] [Google Scholar]
  17. Maharaj, S., Barton, C. D., Karathanasis, T. A. D., Rowe, H. D. and Rimmer, S. M. 2007. “Distinguishing ‘new’ from ‘old’ organic carbon on reclaimed coal mine sites using thermogravimetry:method development.” Soil Sci. 172, No. 4: 292–301. [CrossRef] [Google Scholar]
  18. Martinez-garcia, C., Gonzalez-fonteboa, B., Martinez-abella, F. and Lopez, D.C. 2017. Virtual special issue bio-based building materials. “Performance of mussel shell as aggregate in plain concrete.” Constr Build Mater 139:570–583, https://doi.org/10.1016/j.conbuildmat.2016.09.091 [Google Scholar]
  19. McDowell, C. 1959. “Stabilization of soils with lime, lime fly ash and other lime reactive materials.” Highway Research Board Bulletin, 231: 60–66. [Google Scholar]
  20. Mitchell, J.K. 1981. “Soil improvement – state of the art report.” In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden. Vol. 4, pp. 509–565. [Google Scholar]
  21. Mitchell, J.K. and Hooper, D.R. 1961. “Influence of time between mixing and compaction on properties of lime stabilised expansive clay.” Highway Research Board Bulletin, 314: 14–31. [Google Scholar]
  22. Morris, J.P., T. Backeljau and G. Chapelle. 2019. “Shells from aquaculture: a valuable biomaterial, not a nuisance waste product.” Reviews in Aquaculture 11:42–57. [CrossRef] [Google Scholar]
  23. Othman, N. H., Bakar, B.H.A., Don, M.M. and Johari, M.A.M. 2013. “Cockle Shell Ash Replacement for Cement and Filler in Concrete.” Malaysian Journal of Civil Engineering, Universiti Teknologi Malaysia, Malaysia, 2013, pp. 201–211. [Google Scholar]
  24. Paleologos, E.K., Bunge, R., Weibel, G. et al., 2022. Paradigm Shifts in Incinerator Ash and Dredged Sediment Material Recovery, and in Landfill Monitoring. Environmental Geotechnics, https://doi.org/10.1680/jenge.22.00089 [Google Scholar]
  25. Papadimitriou, C. A., Krey, G., Stamatis, N. and Kallianiotis, A. 2017. “The use of waste mussel shells for the adsorption of dyes and heavy metals”, doi: 10.1002/jctb.5247 [Google Scholar]
  26. Petti, R., Vitone, C., Plotze, M. and Puzrin A. Proceedings of the 9ICEG 9th International Congress on Environmental Geotechnics, 25–28 June 2023. Chania, Greece. Vol. 2 pp. 260–269, https://doi.org/10.53243/ICEG2023-434 [Google Scholar]
  27. Roque, A.J., Paleologos, E.K., O’Kelly, B.C. et al., 2021. “Sustainable Environmental Geotechnics Practices for a Green Economy.” Environmental Geotechnics, https://doi.org/10.1680/jenge.21.00091 [Google Scholar]
  28. SedNet. 2011. “Dredging and Sediment Management European Sea Port, Proc.” 7th International SedNet Conference, Italy, April 6th-9th, Venice. [Google Scholar]
  29. Sherwood, P.T. 1957. “The stabilization with cement of weathered and sulphate bearing clays.” Geotechnique, 7 no. 4: 179–191, doi:10.1680/geot.1957.7.4.179 [CrossRef] [Google Scholar]
  30. Sollecito, F., Vitone, C., Miccoli, D., Plotze, M., Puzrin, A. M. and Cotecchia, F. 2019. “Marine sediments from a contaminated site: geotechnical properties and chemomechanical coupling processes.” Geosci. (Basel) 9, No. 8, 333, https://doi.org/10.3390/geosciences9080333 [CrossRef] [Google Scholar]
  31. Sollecito, F., Plotze, M., Puzrin, A.M., Vitone, C., Miccoli, D., Cotecchia, F. 2021. “Effects of bio-chemo-mechanical processes on the properties of contaminated marine sediments.” Geotechnique, https://doi.org/10.1680/jgeot.21.00095 [Google Scholar]
  32. Taylor, W.H. and Orman, A. 1960. “Lime stabilisation using pre-conditioned soils.” Highway Research Board Bulletin, 262: 1–19. [Google Scholar]
  33. Tremblay, H., Duchesne, J., Locat, J. and Leroueil, S. 2002. “Influence of the nature of organic compounds on fine soil stabilization with cement.” Can. Geotech. J. 39:535–546. https://doi.org/10.1139/T02-002 [CrossRef] [Google Scholar]
  34. Uster, B., Trumm, D., Pope, J., Weber, P., O’Sullivan, A.D., Weisener, C., Diloreto, Z.A. 2014. “Waste Mussel Shells to Treat Acid Mine Drainage: A New Zealand Initiative.” Reclamation matters. [Google Scholar]
  35. Vitone, C., Sollecito, F., Todaro, F., Corbelli, V. (2020). Contaminated marine sites: geotechnical issues bridging the gap between characterization and remediation strategies. Italian Geotechnical J., 4: 41–62. [Google Scholar]
  36. Wijsman, J.W.M., Troost K., Fang, J. et al. 2019. Global Production of Marine Bivalves. Trends and Challenges. In: Smaal A., Ferreira J., Grant J., Petersen J., Strand O. (eds) Goods and Services of Marine Bivalves. Springer. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.