Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 11011
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement
DOI https://doi.org/10.1051/e3sconf/202454411011
Published online 02 July 2024
  1. Amir-Faryar, B., Aggour, M.S., McCuen, R.H. “Universal model forms for predicting the shear modulus and material damping of soils”, Geomech Geoengin, 12, pp. 60–71, 2017. https://doi.org/10.1080/17486025.2016.1162332 [CrossRef] [Google Scholar]
  2. Atkinson, J., Sallfors, G. “Experimental determination of stress–strain–time characteristics in laboratory and in situ tests”, In: Proceedings of the 10th ECSMFE, Florence, Italy, 1991, pp. 915–956. https://doi.org/10.1017/CBO9781107415324.004 [Google Scholar]
  3. Atkinson, J.H. “Non-linear soil stiffness in routine design”, Geotechnique, 50, pp. 487–508, 2000. https://doi.org/10.1680/geot.2000.50.5.487 [CrossRef] [Google Scholar]
  4. Benz, T. “Small Strain Stiffness of Soils and Its Numerical Consequences”, PhD Thesis, Universitat Stuttgart, 2006. [Google Scholar]
  5. Burland, J.B. “Ninth Laurits Bjerrum Memorial Lecture: “Small is beautiful”—the stiffness of soils at small strains”, Can Geotech J, 26, pp. 499–516, 1989. https://doi.org/10.1139/t89-064 [CrossRef] [Google Scholar]
  6. Capdevila, J., Rinaldi, V. “Stress-strain behavior of a heterogeneous and lightly cemented soil under triaxial compression test”, Electronic J Geotech Eng, 20(6), pp. 6745–6760, 2015. [Google Scholar]
  7. Chang, W.-J., Phantachang, T., Ieong, W.-M. “Evaluation of size and boundary effects in simple shear tests with distinct element method”, 2014 World Congress on Advances in Civil, Environmental, and Materials Research, Busan, Korea, August 24–28, 2014. [Google Scholar]
  8. Chindaprasirt, P., Sriyoratch, A., Arngbunta, A., Chetchotisak, P., Jitsangiam, P., Kampala, A. “Estimation of modulus of elasticity of compacted loess soil and lateritic-loess soil from laboratory plate bearing test”, Case Stud Constr Mater, 16, e00837, 2022. https://doi.org/10.1016/j.cscm.2021.e00837 [Google Scholar]
  9. Clayton, C. R. I. “Stiffness at small strain: research and practice”, Geotechnique, 61, pp. 5–37, 2011. https://doi.org/10.1680/geot.2011.61.1.5 [CrossRef] [Google Scholar]
  10. Darendeli, M.B. “Development of a new family of normalized modulus reduction and material damping curves”, PhD Thesis, The University of Texas at Austin, 2001. [Google Scholar]
  11. Dyvik, R., Madshus, C. “Lab measurements of Gmax using bender elements”, In: Advances in the Art of Testing Soil under Cyclic Conditions, Detroit, USA, pp. 186–196, 1985. [Google Scholar]
  12. European Committee for Standardization “EN 13286-2:2010 Unbound and hydraulically bound mixtures - Part 2: Test methods for laboratory reference density and water content - Proctor compaction”, CEN/TC 227 “Road Materials”, Brussels, 2010. [Google Scholar]
  13. Gasparre, A., Hight, D. W., Coop, M. R., Jardine, R. J. “The laboratory measurement and interpretation of the smallstrain stiffness of stiff clays”, Geotechnique, 64, pp. 942– 953, 2014. https://doi.org/10.1680/geot.13.P.227 [CrossRef] [Google Scholar]
  14. Ghadakpour, M., Choobbasti, A.J., Kutanaei, S.S. “Experimental study of impact of cement treatment on the shear behavior of loess and clay” Arab J Geosci, 13(4), pp. 1–11, 2020. https://doi.org/10.1007/s12517-020-5181-7 [CrossRef] [Google Scholar]
  15. Gu, K., Chen, B. “Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction”, Constr Build Mater, 231, 117195, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117195 [CrossRef] [Google Scholar]
  16. Haase, D., Fink, J., Haase, G., Ruske, R., Pecsi, M., Richter, H., Altermann, M., Jager, K.D. “Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000”, Quat Sci Rev, 26, pp. 1301–1312, 2007. https://doi.org/10.1016/j.quascirev.2007.02.003 [CrossRef] [Google Scholar]
  17. Hassanipour, A., Shafiee, A., Jafari, M.K. “Low-amplitude dynamic properties for compacted sand-clay mixtures”, Int J Civ Eng, 9(4), pp. 255–264, 2011. [Google Scholar]
  18. International Organization for Standardization “ISO 17892-3:2015 Geotechnical investigation and testing — Laboratory testing of soil — Part 3: Determination of particle density”, Switzerland, 2015. [Google Scholar]
  19. International Organization for Standardization “ISO 17892- 8:2018 Geotechnical investigation and testing — Laboratory testing of soil — Part 8: Unconsolidated undrained triaxial test”, Switzerland, 2018. [Google Scholar]
  20. International Organization for Standardization “ISO 17892- 9:2018 Geotechnical investigation and testing — Laboratory testing of soil — Part 9: Consolidated triaxial compression tests on water saturated soils”, Switzerland, 2018. [Google Scholar]
  21. International Organization for Standardization “ISO 17892- 12:2018 Geotechnical investigation and testing — Laboratory testing of soil — Part 12: Determination of liquid and plastic limits”, Switzerland, 2018. [Google Scholar]
  22. Jary, Z., Ciszek, D. “Late Pleistocene loess–palaeosol sequences in Poland and western Ukraine”, Quat Int, 296, pp. 37–50, 2013. https://doi.org/10.1016/j.quaint.2012.07.009 [CrossRef] [Google Scholar]
  23. Jary, Z., Krzyszkowski, D. “Stratigraphy, genesis and properties of loess in Trzebnica brickyard, Southwestern Poland”, Acta Univ Wratislav, 1702, pp. 63–83, 1994. [Google Scholar]
  24. Kim, D., Kang, S.-S. “Engineering properties of compacted loesses as construction materials”, KSCE J Civ Eng, 17, pp. 335–341, 2013. https://doi.org/10.1007/s12205-013-0872-1 [CrossRef] [Google Scholar]
  25. Krawczyk, M., Ryzner, K., Skurzyński, J., Jary, Z. “Lithological indicators of loess sedimentation of SW Poland”, Contemp. Trends Geosci, 6, pp. 94–111, 2017. https://doi.org/10.1515/ctg-2017-0008 [CrossRef] [Google Scholar]
  26. Lee, J.S., Santamarina, J.C. “Bender Elements: Performance and Signal Interpretation”, J Geotech Geoenvironmental Eng, 131, pp. 1063–1070, 2005. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063) [CrossRef] [Google Scholar]
  27. Młynarek, Z., Wierzbicki, J., Mańka, M. “Geotechnical Parameters of Loess Soils from CPTU and SDMT”, In: 3rd International Conference on the Flat Dilatometer DMT’15, Rome, Italy, 2015, pp. 481–489. [Google Scholar]
  28. Ng, C.W.W., Baghbanrezvan, S., Sadeghi, H., Zhou, C., Jafarzadeh, F. “Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions”, Can Geotech J, 54(9), pp. 1310–1319, 2017a. https://doi.org/10.1139/cgj-2016-0531 [CrossRef] [Google Scholar]
  29. Ng, C.W.W., Kaewsong, R., Zhou, C., Alonso, E.E. “Small strain shear moduli of unsaturated natural and compacted loess”, Geotechnique, 67, pp. 646–651, 2017b. https://doi.org/10.1680/jgeot.16.T.013 [CrossRef] [Google Scholar]
  30. Oztoprak, S., Bolton, M.D. “Stiffness of sands through a laboratory test database”, Geotechnique, 63(1), pp. 54–70, 2013. https://doi.org/10.1680/geot.10.P.078 [CrossRef] [Google Scholar]
  31. Puzrin, A.M., Burland, J.B. “A logarithmic stress–strain function for rocks and soils”, Geotechnique, 46, pp. 157–164, 1996. https://doi.org/10.1680/geot.1996.46.1.157 [CrossRef] [Google Scholar]
  32. Richart, F.E., Hall, J.R., Woods, R. “Vibrations of Soils and Foundations” Prentice-Hall Inc., Englewood Cliffs, USA, 1970. [Google Scholar]
  33. Rinaldi, V., Claria, J.J., Santamarina, J.C. “The small-strain shear modulus (Gmax) of Argentinean loess”, In: 15th International Conference on Soil Mechanics and Foundation Engineering, Istanbul, Turkey, 2001, pp. 495–498. [Google Scholar]
  34. Rinaldi, V., Rocca, R.J., Zeballos, M. “Geotechnical characterization and behaviour of Argentinean collapsible loess”, Characterisation Eng Prop Nat Soils, 3, pp. 2259–2286, 2007. https://doi.org/10.1201/NOE0415426916.ch16 [Google Scholar]
  35. Sobol, E., Gabryś, K., Zabłocka, K., Šadzevičius, R., Skominas, R., Sas, W. “Laboratory Studies of Small Strain Stiffness and Modulus Degradation of Warsaw Mineral Cohesive Soils”, Minerals, 10(12), 1127, 2020. https://doi.org/10.3390/min10121127 [CrossRef] [Google Scholar]
  36. Sokolovich, V.E., Semkin, V.V. “Chemical stabilization of loess soils”, Soil Mech Found Eng, 21, pp. 149–154, 1984. https://doi.org/10.1007/BF01710605 [CrossRef] [Google Scholar]
  37. Song, B., Tsinaris, A., Anastasiadis, A., Pitilakis, K., Chen, W. “Small-strain stiffness and damping of Lanzhou loess”, Soil Dyn Earthq Eng, 95, pp. 96–105, 2017. https://doi.org/10.1016/j.soildyn.2017.01.041 [CrossRef] [Google Scholar]
  38. Vardanega, P.J., Bolton, M.D. “Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain”, J Geotech Geoenvironmental Eng, 139, pp. 1575–1589, 2013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887 [CrossRef] [Google Scholar]
  39. Viggiani, G., Atkinson, J. H. “Stiffness of fine-grained soil at very small strains”, Geotechnique, 45, pp. 249–265, 1995. https://doi.org/10.1680/geot.1995.45.2.249 [CrossRef] [Google Scholar]
  40. Wang, F., Li, D., Du, W., Zarei, C., Liu, Y. “Bender Element Measurement for Small-Strain Shear Modulus of Compacted Loess”, Int J Geomech, 21, 04021063, 2021. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002004 [CrossRef] [Google Scholar]
  41. Wang, R., Hu, Z., Ren, X., Li, F., Zhang, F. “Dynamic modulus and damping ratio of compacted loess under long-term traffic loading”, Road Mater Pavement Des, 23, pp. 1731–1745, 2022. https://doi.org/10.1080/14680629.2021.1924232 [CrossRef] [Google Scholar]
  42. Wang, Z., Luo, Y., Guo, H., Tian, H. “Effects of initial deviatoric stress ratios on dynamic shear modulus and damping ratio of undisturbed loess in China”, Eng Geol, 143, pp. 43–50, 2012. https://doi.org/10.1016/j.enggeo.2012.06.009 [CrossRef] [Google Scholar]
  43. Zarei, C., Wang, F., Qiu, P., Fang, P., Liu, Y. “Laboratory Investigations on Geotechnical Characteristics of Albumen Treated Loess Soil”, KSCE J Civ Eng, 26, pp. 539–549, 2022. https://doi.org/10.1007/s12205-021-1723-0 [CrossRef] [Google Scholar]
  44. Zhang, J., Andrus, R.D., Juang, C.H. “Normalized Shear Modulus and Material Damping Ratio Relationships”, J Geotech Geoenvironmental Eng, 131, pp. 453–464, 2005. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453) [CrossRef] [Google Scholar]
  45. Zhong, Z., Liu, X. “Mechanical characteristics of intact Middle Pleistocene Epoch loess in northwestern China”, J Cent South Univ, 19, pp. 1163–1168, 2012. https://doi.org/10.1007/s11771-012-1123-1 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.